期刊文献+

基于雾计算的光群空间分配算法分析 被引量:1

Light group space allocation algorithm based on the fog computing
下载PDF
导出
摘要 为提高内存和网络带宽的利用率,减少核心数据中心负荷,提出了基于雾计算的光群空间分配算法。建立了分布式环境下的传输空间的分配新算法,用于节省网络临界资源、提高并行数据处理速度、提高网络带宽、减少服务器负荷等方面。通过相似于凹凸镜的光线工作原理,确定了雾计算空间分配原理;通过分派权限的控制与计算,确定了雾计算环境下分派的空间大小。在此基础上推出了合理的空间计算公式,能够准确计算出基于雾计算分配环境下的光群空间大小。该算法已经成功应用于局网网邮空间管理过程中。 In order to improve the utilization of memory and network bandwidth, and reduce the load of core data center, a space allocation algorithm based on fog computing is proposed. A new distributed algorithm for distributed environment is established to save the network critical resources, improve the processing speed of the parallel data, increase the network bandwidth and reduce the server load. Through the working principle of light similar to the concave convex mirror, the fog allocation space and control is calculated. A reasonable space calculation formula is developed to accurately calculate the group space size of the fog environment. The algorithm has been successfully applied to the post bureau network space management process.
作者 白文荣
出处 《北京信息科技大学学报(自然科学版)》 2016年第6期69-72,共4页 Journal of Beijing Information Science and Technology University
基金 内蒙古自治区教育厅科技基金项目(NJZY16408)
关键词 云计算 雾计算 光群空间 空间分派 网络邮箱 共享网 cloud computing fog computing light group space space allocation networkmailbox network
  • 相关文献

参考文献2

二级参考文献60

  • 1Amazon SimpleDB. http://aws, amazon, com/simpledb/, 2011-8-10.
  • 2Connor Alexander G, Chrysanthis Panos K, Labrinidis Alexandros. Key key-value stores for efficiently processing graph data in the cloud//Proceedings of the GDM. Hannover, Germany, 2011:88-93.
  • 3Lordanov Borislav. HyperGraphDB: A generalized graph database//Proceedings of the IWGD. JiuZhai Valley, China, 2010:25-36.
  • 4Eifrem Emil. NOSQL: Scaling to size and scaling to complexity, http://blogs, neotechnology, com/emil/2009/11/ nosql-scaling tosize-and-scaling-to-complexity, html, 2009- 1-15.
  • 5Wu Sai, Jiang Da-Wei, Ooi Beng Chin et al. Efficient B-tree based indexing for cloud data proeessing//Proeeedings of the VLDB. Singapore, 2010: 1207-1218.
  • 6Wang Jin-Bao, Wu Sai, Gao Hong et al. Indexing multi dimensional data in a cloud system//Proceedings of the SIGMOD. Indianapolis, Indiana, USA, 2010: 591-602.
  • 7Tsatsanifos George, Sacharidis Dimitris, Sellis Timos et al. MIDAS: Multi-attribute indexing for distributed architecture systems//Proceedings of the SSTD. Minneapolis, MN, USA, 2011:168-185.
  • 8Aguilera M K, Golab W, Shah M A. A practical scalable distributed B-tree//Proceedings of the VLDB. Auckland, New Zealand, 2008: 598-609.
  • 9Zhang Xiang-Yu, Ai Jing, Wang Zhong-Yuan, Lu Jia-Heng et al. An efficient multi-dimensional index for cloud data management//Proceedings of the CloudDB. Hong Kong, China, 2009:17-24.
  • 10InfiniteGraph, the Distributed Graph Database. http:// www. infinitegraph, com/, 2011 -7 -29.

共引文献105

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部