摘要
利用初等数论及代数数论的方法研究了不定方程x^2+4~k=y^9(k=3,4,5)在Gauss整环中的可解性,证明该方程当k=4时仅有整数解(x,y)=(±16,2),而当k=3,5时无整数解.
In the report, the solvability of Diophantine equation x2 +4k = y9( k = 3,4,5 ) in the Gauss integer ring was studied by using the methods of the elementary number theory and algebraic number theory, and it was proved that the equation has only integer solution (x, y) = ( + 16,2) when k = 4 , however, it has no integer solution when k = 3,5.
出处
《延安大学学报(自然科学版)》
2016年第4期15-18,共4页
Journal of Yan'an University:Natural Science Edition
基金
陕西省科技厅自然科学基金项目(2013JQ1019)
延安大学自然科学专项基金项目(YDZ2013-05)
延安大学研究生教育创新计划项目(YCX201613)
关键词
不定方程
Gauss整环
整数解
Diophantine equation
Gauss integer ring
integer solution