期刊文献+

强光干扰下可见光图像质量分析方法研究

Research on Image Quality Analysis under Strong Light Interference
下载PDF
导出
摘要 研究强光对图像中目标识别的干扰能力以及信息处理对强光干扰的抑制能力,并对信息处理效果进行量化分析。研究过程采用了两种不同的研究方案,一是基于无干扰底图的强光干扰效果分析,将被干扰的图像与同一场景未受干扰的可见光图像进行比对,通过配准后的图像直接分析干扰抑制效果。二是基于目标模板的强光干扰效果分析,选择目标模板进行仿真,分别计算信息处理前后目标模板在目标场景下的可识别度,并进行比对,即获得信息处理对强光干扰的抑制效果。两种研究方案均能对信息处理的效果进行定量的统计分析。将处理效果量化,能够对信息处理技术提供必要的技术支持。 The interference performance to the target recognition in images from strong light and the suppression of information processing to the strong light interference are researched. And the information processing effect is analyzed quantitatively. Two different research schemes are adopted. The first is strong light interference effect analysis based on base map without interference. The interference image is compared with the visible light image without interference in a same scene. And the interference suppression effect is directly analyzed based on the registered images. The second is strong light interference effect analysis based on target template. The target template is selected for simulation and the recognition levels of the target template under target scene before and after processing are calculated respectively and compared to get the suppression effect of the information processing to strong light interference. The information processing effect can both be quantitatively statistically analyzed through the two research schemes. Processing effect is quantified to provide technology support to information processing technology.
作者 尚举邦
出处 《光电技术应用》 2016年第6期47-52,58,共7页 Electro-Optic Technology Application
关键词 强光干扰 图像信息处理 可识别度 strong light interference image information processing recognition level
  • 相关文献

参考文献3

二级参考文献63

  • 1汪源源,孙志民,蔡铮.改进的奇异值分解法估计图像点扩散函数[J].光学精密工程,2006,14(3):520-525. 被引量:14
  • 2谢正祥,王志芳,刘燕欢,刘玉红,王颖,李虹.灰度谱分级平坦化理论[J].中国医学物理学杂志,2006,23(6):405-407. 被引量:19
  • 3PARVEZ SAZZAD Z M, KAWAYOKE Y, HORI- TA Y. No reference image quality assessment for JPEG2000 based on spatial features[J]. Signal Processing : Image Communication, 2008, 23 (4) : 257 - 268.
  • 4ZHANG J, LE THINH M. A new no-reference quali- ty metric for JPEG2000 images[J]. IEEE Transactions on Consumer Electronics, 2010, 56(2) :743-750.
  • 5BABUA R V,SURESH S, PERKISC A. No-refer- ence JPEG-image quality assessment using GAP- RBF [J]. Signal Processing, 2007, 87 (6):1493- 1503.
  • 6SURESH S, BABU R V, KIM H J. No-reference image quality assessment using modified extreme learning machine elassifier [J]. Applied Soft Com- puting, 2009,9(2) :541-552.
  • 7SHEN J, LI Q, ERLEBACHER G. Hybrid no-ref- erence natural image quality assessment of noisy, blurry, JPEG2000, and JPEG images [J]. IEEE Transactions Image Processing, 2011,20(8) :2089- 2098.
  • 8ANGELA D, LI Z P, MAURO B. A full-reference quality metric for geometrically distorted images[J]. IEEE Transactions on Image Processing, 2010,19 (4) :867-881.
  • 9WANG Z, BOVIK A C. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3): 181-184.
  • 10WANG Z, BOVIK A C, SHEIKH H R, et al.. Image quality assessment: from error visibility to structural similarity [J].IEEE Transactions on Image Processing, 2004,13(4) : 600-612.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部