期刊文献+

基于时域平滑约束的脑磁时序信号逆问题求解方法 被引量:1

An MEG Inverse Solver by Imposition of Temporal Smoothness Constraint
下载PDF
导出
摘要 由脑磁时序信号重建脑内时序神经信号时,除了要保证重建信号位置和强度的准确性,还要避免重建源信号在时域上瞬变.针对这一问题,提出了一种基于时域平滑约束的脑磁时序信号逆问题求解方法.该方法不同于传统最小范数估计算法(Minimum Norm Estimate,MNE),通过引入时域平滑正则算子构造双参数混合正则化,根据广义交叉验证(Generalized Cross-Validation,GCV)原则选取双正则化参数后,根据单正则项的解在源信号中的权重将其进行线性组合估算出源信号.仿真数据实验表明,本文方法比传统MNE方法的总体均方误差小,且各时刻均方误差基本稳定在同一水平;同时本文方法重建的源信号与仿真源信号变化趋势基本一致.真实数据实验发现,本文方法重建结果的曲率变化率为0.0640,而传统MNE方法重建结果的曲率变化率为0.1646.实验结果证明本文方法能重建出空域准确且时域平滑的脑内神经信号. The magnetoencephalography (MEG) inverse problem refers to the reconstruction of the neural activity of the brain from MEG measurements. A method to solve the MEG inverse problem employing temporal smoothness constraint is proposed under the assumption that time course of the source is smooth in time. Specifically, the temporal smoothness of the source was ensured by imposing a roughness penalty in the minimum norm estimate (MNE) data fitting criterion in the form of dual-parameter regularization. To select two tuning parameters, the generalized cross-validation criterion (GCV) was used. The inverse solutions were obtained as the linear combination of the one-parameter regularized solutions. We evaluated the proposed method by a synthetic example and a real data example. Compared with MNE, the proposed method can get smaller overall mean squared error (MSE) and smaller curvature variability. Moreover, the proposed method can reconstruct the shape of the time course of source better.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第12期2823-2828,共6页 Acta Electronica Sinica
基金 中国科学院百人计划基金项目 国家高技术研究发展计划(863计划)(No.2015AA020514) 国家自然科学基金(No.61301042) 脑功能疾病调控治疗北京市重点实验室开放课题 江苏省自然科学基金(No.BK2012189) 苏州市医疗器械与新医药专项基金(No.ZXY201426) 中法"蔡元培"项目(No.201404490123)
关键词 脑磁时序信号 逆问题 双参数混合正则化 时域平滑 magnetoencephalography (MEG) time course inverse problem two-parameter reguladzation temporal smoothness
  • 相关文献

参考文献5

二级参考文献157

  • 1顾勇为,归庆明,边少锋,郭建峰.地球物理反问题中两种正则化方法的比较[J].武汉大学学报(信息科学版),2005,30(3):238-241. 被引量:21
  • 2Wang Z, Lin R M, Lim M K. Structural damage detection using measured FRF data [J]. Computer Methods in Applied Mechanics and Engineering, 1997, 147: 187- 197.
  • 3Ren W X, Roeck G D. Structural damage identification using modal data.Ⅰ: simulation verification [J]. Joumal of Structural Engineering ASCE, 2002, 128: 87- 103.
  • 4Weber B, Paultre P, Proulx J. Structural damage detection using nonlinear parameter identification with Tikhonov regularization [J]. Structural Control and Health Monitoring, 2007, 14: 406-427.
  • 5Turco E. A strategy to identify exciting forces acting on structures [J]. International Journal for Numerical Methods in Engineering, 2005, 64: 1483- 1508.
  • 6Turco E. Load distribution modelling for pin-jointed trusses by an inverse approach [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 165: 261- 306.
  • 7Law S S, Chan T H T, Zhu X Q, Zeng Q H. Regulaxization in moving force identification [J]. Journal of Engineering Mechanics ASCE, 2001, 127: 136- 148.
  • 8Golub G H, Heath M, Wahba G. Generalized Cross-Validation as a method for choosing a good ridge parameter [J]. Technometrics, 1979, 21: 215- 223.
  • 9Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve [J]. SIAM Review, 1992, 34: 561- 580.
  • 10Engl H W. Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates [J]. Journal of Optimal Theory and Application, 1987, 52: 209-215.

共引文献47

同被引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部