期刊文献+

基于脉冲序列核的脉冲神经元监督学习算法 被引量:2

A New Supervised Learning Algorithm for Spiking Neurons Based on Spike Train Kernels
下载PDF
导出
摘要 脉冲神经元应用脉冲时间编码神经信息,监督学习的目标是对于给定的突触输入产生任意的期望脉冲序列.但由于神经元脉冲发放过程的不连续性,构建高效的脉冲神经元监督学习算法非常困难,同时也是该研究领域的重要问题.基于脉冲序列的核函数定义,提出了一种新的脉冲神经元监督学习算法,特点是应用脉冲序列核构造多脉冲误差函数和对应的突触学习规则,并通过神经元的实际脉冲发放频率自适应地调整学习率.将该算法用于脉冲序列的学习任务,期望脉冲序列采用Poisson过程或线性方法编码,并分析了不同的核函数对算法学习性能的影响.实验结果表明该算法具有较高的学习精度和良好的适应能力,在处理复杂的时空脉冲模式学习问题时十分有效. The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit arbitrary spike trains in response to given synaptic inputs. However, due to the discontinuity in the spike process, the formula- tion of efficient supervised learning algorithms for spiking neurons is difficult and remains an important problem in the re- search area. Based on the definition of kernel functions for spike trains,this paper proposes a new supervised learning algo- rithm for spiking neurons with temporal encoding. The learning rule for synapses is developed by constructing the multiple spikes error function using spike train kernels, and its learning rate is adaptively adjusted according to the actual firing rate of spiking neurons during learning. The proposed algorithm is successfully applied to various spike trains learning tasks, in which the desired spike trains are encoded by Poisson process or linear method. Furthermore, the effect of different kernels on the performance of the learning algorithm is also analyzed. The experiment results show that our proposed method has higher learning accuracy and flexibility than the existing learning methods, so it is effective for solving complex spatio-tem- poral spike pattern learning problems.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第12期2877-2886,共10页 Acta Electronica Sinica
基金 国家自然科学基金(No.61165002 No.61363059) 甘肃省自然科学基金(No.1506RJZA127) 甘肃省高等学校科研项目(No.2015A-013)
关键词 脉冲神经元 监督学习 脉冲序列核 内积 脉冲序列学习 spiking neuron supervised learning spike train kernel inner product spike train learning
  • 相关文献

参考文献3

二级参考文献83

  • 1张国柱,黄可生,周一宇,姜文利.基于加权AVA的SVM辐射源识别算法研究[J].信号处理,2006,22(3):357-360. 被引量:12
  • 2Hodgkin A L,Huxley A F.A quantitative description of membrane and its application to conduction and excitation in nerve [ J]. Journal of Physiology, 1952,117 (4) : 500 - 544.
  • 3Krinskii V I, KoKoz Y M. Analysis of equations of excitable membranes. I. reduction of the Hodgkin-Huxley equations to a second order system[ J]. Biofizika, 1973,18 (3) : 506 - 511.
  • 4Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber[ J] .Biophysical Journal, 1981,35( 1 ) : 193 - 213.
  • 5FitzHugh R. Impulses and physiological states in models of nerve membrane[ J ]. Biophysical Journal, 1961,1 (6) : 445 - 466.
  • 6Izhikevich E M. Simple model of spiking neurons[J].Transactions on Neural Networks, 2003,14(6) : 1569 - 1572.
  • 7Brette R, Gerstner W. Adaptive exponential integrate-and-fire model as an effective description of neuronal acfivity[J]. Journal of Neurophysiology ,2005,94(5) :3637 - 3642.
  • 8Lapicque L. Recherches quanfitatives sur 1' excitation electriquc des nerfs traitee comme tale polarization[ J] .Journal de Physiologie et Pathologie General, 1907,9:620- 635.
  • 9Izhikevich E M. Resonate-and-fire neurons[ J ]. Neural Network,2001,14(6 - 7) :883 - 894.
  • 10McKean H P.Nagumo' s equation[ J] .Advances in Mathematics, 1970,4(3) :209 - 223.

共引文献34

同被引文献5

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部