期刊文献+

基于地形高度域的数据压缩算法研究 被引量:3

Research on Terrain Height Field Compression Algorithm
下载PDF
导出
摘要 随着遥感技术的发展,地形数据规模越来越大,远远超过了内存处理的范围,成为急需解决的问题.通过数据压缩提高系统吞吐量是常用技术之一,随着GPU技术的快速发展,传统的压缩算法无法充分利用GPU的能力.鉴于此,本文提出了一种基于GPU的地形数据压缩方法,实现了高度域和位置信息的压缩.不同于其他的算法仅对高度或位置进行压缩,本文的主要贡献在于将地形的位置和高度同时进行处理,当前顶点的所有信息都可以根据当前分段计算得到.算法对地形的高度域进行贝塞尔曲线的近似,保存每个顶点的差值,实现有损和无损的相结合的高比率的压缩.通过与传统方法的比较,实验结果表明,能够取得很好的压缩效果. With the development of remote sensing technology, the size of terrain is growing rapidly, and far beyond the scope of main memory, has become an urgent problem. Data compression is a popular technology to increase system throughput. With the rapid development of GPU ( Graphics Processing Unit) technology, the traditional compression algo- rithms cannot take full advantage of the ability of the current GPU. In this paper, we propose a GPU-based terrain data com- pression method, and achieve a high rate compression of terrain height field and location. Comparing to other algorithms, the main contribution of our algorithm is that the compression of terrain height filed and position is executed in the same time, and all the information of a node can be calculated according to the presentstrip. For terrain height domain, we firstly make Bezier curve approximation, then save the difference. After the steps above, we can achieve high compression ratio. By com- parison with traditional methods, we get reasonable experimental results.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第12期2894-2899,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61271435) 北京市自然科学基金重点项目(No.4141003)
关键词 数据压缩 地形渲染 图形处理器 data compression terrain rendering graphics processing unit (GPU)
  • 相关文献

参考文献3

二级参考文献55

  • 1吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 2David F Rogers.计算机图形学的算法基础[M].北京:机械工业出版社,2002.
  • 3Cabral B, et al. Accelerated volume rendering and tomographic reconstruction using texture mapping hardware[ A]. Proceedings of the 1994 Symposium on Volume Visualization[ C]. Virginia, United States: Tysons Comer, 1994.91 - 98.
  • 4Mueller K, et al. Rapid 3D cone-beam reconstruction with SART by using texture mapping hardware [ J ]. IEEE Trans Med Imag,2000,19(12) :1227 - 1237.
  • 5Li X, et al. Parallel iterative cone beam CT image reconstruction on a PC cluster[ J]. Journal of X-Ray Science and Technology, 2005,13 (2) : 63 - 72.
  • 6Mueller K,et al.Why do commodity graphics hardware boards (GPUs) work so well for acceleration of computed tomography [A]. Proceedings of SPIE Electronic Imaging 2007 [ C ]. Pollak,Ilya:Computational Imaging V,2007.1- 12.
  • 7Owens J,et al.GPGPU:General -Purpose Computation on Graphics Hardware[R].San Dieago:SIGGRAPH2007 Courses,2007.
  • 8Zhao X,Bian J, Emil S. Y,et al. GPU-based 3D cone-beam CT image reconstruction: application to micro cr[A]. Nuclear Science Symposium Conference Record[ C]. Hawaii: NSS apos, 2007.3922 - 3925.
  • 9Xu F and Mueller K. Accelerating popular tomographic reconstruction algorithms on commodity PC graphics hardware[ J]. IEEE Trans Nuclear Sci, 2005,52(3) : 654 - 663.
  • 10Andersen A H, et al. Simultaneous Algebraic Reconstruction Technique (SART) :a superior implementation of the ART algorithm[ J]. Ultrasonic Imaging, 1984,6(2) :81 - 94.

共引文献27

同被引文献21

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部