期刊文献+

一类非线性系统的自组织模糊神经网络控制 被引量:6

Control of a class of nonlinear systems based on self-organizing fuzzy neural
下载PDF
导出
摘要 针对一类MIMO不确定非线性有干扰且控制增益符号未知的系统进行跟踪控制的问题,提出了一种在线自组织模糊神经网络的改进算法,用以克服参数选择困难的问题,并基于该算法给出了一种自适应鲁棒控制方法。首先基于主导输入的概念将MIMO系统分解为多个SISO系统构成的系统,然后结合自组织模糊神经网络在线对系统中的未知函数进行逼近,对网络结构和参数实现在线调节,再利用Nussbaum函数来克服控制增益符号未知,并且引入鲁棒项及复合误差的估计来补偿复合误差。最后基于Lyapunov稳定性理论证明了整个闭环系统半全局一致最终有界。理论和仿真结果表明提出方法的有效性。 This paper discusses the problem of tracking control a class of uncertain MIMO nonlinear sys- tem with disturbances and unknown control gain sign. An improved algorithm for online self-organizing fuzzy neural network is proposed to overcome the difficulty of choosing parameters and based on it, a ro- bust and adaptive controller is proposed. Firstly, the MIMO system was decompounded into several SISO systems, and then the improved self-organizing adaptive fuzzy neural network was utilized to approximate the unknown function with the structure and parameters being tuned online. Then a Nussbaum function was adopted to overcome the difficulty of the unknown control gain sign, and a robust control term and an error estimation term were utilized to compensate for the errors. The closed-loop control system was proved to be semi-globally, uniformly, and ultimately bounded by Lyapunov stability theorem. Theoretical analysis and numerical simulations show the effectiveness of the developed approach.
出处 《电机与控制学报》 EI CSCD 北大核心 2016年第12期82-91,共10页 Electric Machines and Control
基金 国家自然科学基金(51177040) 风力发电机组与控制湖南省重点实验室开放研究基金(XX0001) 湖南省教育厅资助项目(14C0288)
关键词 不确定MIMO系统 控制增益符号未知 自组织模糊神经网络 鲁棒控制 uncertain MIMO system unknown control gain sign self-organizing fuzzy neural network robust control
  • 相关文献

参考文献5

二级参考文献35

  • 1张建华,蒋能记,杨水林.前馈串级控制在原油污水处理中的应用[J].控制工程,2006,13(S1):4-6. 被引量:3
  • 2潘发举.串级控制在氨汽提塔上的应用[J].石油化工自动化,2006,42(6):86-87. 被引量:3
  • 3胡云安,晋玉强,张友安,崔平远.基于神经网络的严反馈块非线性系统的鲁棒控制[J].控制与决策,2004,19(7):808-812. 被引量:14
  • 4JJESlotine,WeipingLi.应用非线性控制[M].北京:机械工业出版社.2006.
  • 5LIU Chenchen, CHEN Fuchuang. Adaptive control of non-linear continuous systems using neural networks-general relative degree and MIMO cases [J]. Int J Control, 1993,58(2): 317 - 335.
  • 6NARENDRA K S, MUKHOPADHYAY S. Adaptive control of nonlinear multivariable system using neural networks [ J]. Neural Networks, 1994,7(5) :737 - 752.
  • 7LIU G P, KADIRKAMANATHAN V, BILLINGS S A. Variable neural networks for adaptive control of nonlinear systems [J]. IEEE Trans Systems, Man, and Cybermetics-Part C, 1999,29 ( 1 ): 34 -43.
  • 8PATINO H D, LIU Derong. Neural network-based model reference adaptive control system [ J]. IEEE Trans Systems, Man, and Cybermctics-Part B ,2001,30(2): 198 - 204.
  • 9SANNER R, SLOTINE J J. Gaussian networks for direct adaptive control [J]. IEEE Trans on Neural Networks, 1992, 3(6): 837 -864.
  • 10TONG Shaocheng, TANG Jiantao, WANG Tao. Fuzzy adaptive control of multivariable nonlinear systems[J]. Fuzzy Sets and Systems ,2000,111(2),163- 167.

共引文献61

同被引文献60

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部