期刊文献+

基于视觉语义主题的图像自动标注 被引量:3

Image Automatic Annotation Based on Visual Semantic Topics
下载PDF
导出
摘要 为减小图像检索中语义鸿沟的影响,提出了一种基于视觉语义主题的图像自动标注方法。首先,提取图像前景与背景区域,并分别进行预处理;然后,基于概率潜在语义分析与高斯混合模型建立图像底层特征、视觉语义主题与标注关键词间的联系,并基于该模型实现对图像的自动标注。采用corel 5数据库进行验证,实验结果证明了本文方法的有效性。 A novel automatic annotation scheme based on the visual semantic topics is proposed to reduce the impact of semantic gap. Firstly, the foreground and background regions of the image are extracted and pro- cessed respectively. Then, the relations among the low-level feature, the visual semantic topics and the key words are built based on the probabilistic latent semantic analysis(PLSA) and the Gauss mixture model ( GMM). Finally, the images can be annotated based on the introduced model. The widely used database corel 5 is used as test bed, and the test results validate the new scheme.
出处 《测控技术》 CSCD 2016年第12期11-15,共5页 Measurement & Control Technology
基金 河南省基础与前沿技术研究项目(132300410462 112300410281)
关键词 视觉语义主题 概率潜在语义分析 高斯混合模型 图像自动标注 visual semantic topics probabilistic latent semantic analysis Gaussian mixture model automaticimage annotation
  • 相关文献

参考文献4

二级参考文献98

  • 1吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 2施智平,李清勇,史俊,史忠植.集成视觉特征和语义信息的相关反馈方法[J].计算机辅助设计与图形学学报,2007,19(9):1138-1142. 被引量:4
  • 3Vasconcelos N. Minimum probability of error image retrieval[J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2322-2336
  • 4Rasiwasia N, Moreno P J, Vasconcelos N. Bridging the gap: query by semantic example [J].IEEE Transactions on Multimedia, 2007, 9(5):923-938
  • 5Goh K S, Chang E, Cheng K T. SVM binary classifier ensembles for image classification [C]//Proceedings of the 10th International Conference on Information and Knowledge Management, Atlanta, 2001:395-402
  • 6Cusano C, Ciocca G, Schettini R. Image annotation using SVM [C]//Proceedings of SPIE, San Jose, 2004, 5304:330 -338
  • 7Gao Y L, Fan J P, Xue X Y, et al. Automatic image annotation by incorporating feature hierarchy and boosting to scale up SVM classifiers [C] //Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara, 2006:901-910
  • 8Chang E, Goh K, Sychay G, et al. CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(1):26-38
  • 9Town C, Sinclair D. Content based image retrieval using semantic visual categories [ R].Cambridge: AT&T Laboratories, 2001
  • 10Li J, Wang J Z. Automatic linguistic indexing of pictures by a statistical modeling approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (9): 1075-1088

共引文献85

同被引文献19

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部