摘要
设S是E(G)的一个子集,如果G-S具有唯一的完美匹配,那么称S为G的一个反强迫集。G的最小反强迫集的大小称为G的反强迫数,记为af(G)。我们给出含n个六边形的环状fibonacene六角链的反强迫数。
Suppose S is a subset of E(G). If G-S has a unique perfect matching, then S is named as an anti-forcing set of G. The smallest cardinality among all anti-forcing sets of G is the anti-forcing number of G, denoted by(Gaf). In the paper, the anti-forcing number is given, which consists of "n" hexagons with cyclo-fibonacene chains.
出处
《萍乡学院学报》
2016年第6期11-13,17,共4页
Journal of Pingxiang University
基金
福建省中青年教育科研项目(JA15559)
宁德师范学院校级科研经费资助项目(2014Q50)