摘要
构建一类资源充足条件下具有脉冲反馈控制的害虫防控数学模型.首先,通过数学分析及类Poincare准则对模型进行研究,获得脉冲系统阶1周期解存在唯一性及轨道渐近稳定性的充分条件.其次,数值模拟验证主要结论.最后,给出在资源充足条件下的水枪脉冲喷杀和生物防治组合的害虫防控策略.
A kind of mathematics model with impulsive state control is constructed. Firstly, the model is studied by mathematical analysis and Poincare criterion, and some sufficient conditions of the existence and orbital asymptotically stability of order 1 periodic solution are obtained. Secondly, the mathematical results are verified by the numerical simulations. Finally, the strategies of the pest prevention and control are proposed, which combine light trapping and biological control.
出处
《玉林师范学院学报》
2016年第5期21-28,共8页
Journal of Yulin Normal University
基金
广西红树林害虫综合防控数学模型研究(No.61364020)
关键词
数学模型
阶1周期解
害虫防控
水枪喷杀
脉冲反馈控制
mathematical model
order 1 periodic solution
pest prevention and control
water-gun spraying
impulsive state feedback control