期刊文献+

少年与中年脑电信号的多尺度符号序列熵分析 被引量:8

Multiscale sign series entropy analysis based on the young and middle-aged electroencephalogram
下载PDF
导出
摘要 目的脑电信号的生理分析对于评估大脑功能的活跃程度、生理状态具有重要意义,脑电图(electroencephalography,EEG)是临床检查脑部疾病的一种手段,而影响脑电图结果的因素很多,其中年龄是不容忽视的因素之一。本论文提出多尺度符号序列熵(multiscale sign series entropy,MSSE)用于分析不同年龄阶段的β波脑电信号,采用符号化的方法来处理时间序列可以去除一些细节的信息而保留感兴趣的部分。方法首先依次对4组中年和少年的β波脑电数据从数据长度N、字长m和噪声等多个角度对其符号序列熵(sign series entropy,SSE)进行分析,验证了SSE能够正确区分中年和少年的β波脑电信号。接着基于SSE算法在多个尺度下对含噪声和去噪声的中年和少年的β波脑电信号进行分析。结果随着尺度的增加,含噪声与去噪声β波脑电信号SSE的值也同步升高,并且少年的SSE均高于中年的SSE。结论脑电信号的多尺度符号熵分析方法可以有效区分少年和中年β波脑电信号,并且在信号噪声的影响下也可对不同年龄段的β波脑电信号进行检测。 Objective Electroencephalogram( EEG) is a kind of method for clinical examination of brain diseases. A lot of factors affect the EEG results and the age is one of the factors cannot be ignored. This paper presents multiscale sign series entropy( MSSE) analysis method for beta wave of EEG signal analysis of different age stages. Sign way to handling time sequence may remove certain details of the information and reserve the interested parts.Methods We first analyze the sign series entropy( SSE) from four groups of the young and middleaged beta wave of EEG data, including multiple angles data length,word length m and noise,and verify that the SSE can correctly distinguish the young and middle-aged beta wave of EEG. Then atmultiple scales,we analyze noisy EEG and denoising EEG based on SSE. Results With the increase of the scale,the values of the SSE also increase,and the SSE of the youth are higher than that of middle-aged.Conclusions namely under the MSSE can effectively distinguish young and middle-aged beta wave of EEG,and in the influence of signal noise can also be detected in different ages beta wave of EEG.
出处 《北京生物医学工程》 2016年第6期599-603,608,共6页 Beijing Biomedical Engineering
基金 国家自然科学基金(61271082 61401518) 江苏省重点研发计划(社会发展)项目(BE2015700) 江苏省自然科学基金(BK20141432) 江苏省高校自然科学研究重大项目(16KJA310002) 南京军区南京总医院基金(2014019) 南京市医疗卫生科技项目(201503009) 中国药科大学中央高校基本科研业务费专项资金(FY2014LX0039)资助
关键词 脑电图 符号序列熵 多尺度符号序列熵 β波 临床诊断 electroencephalography sign series entropy multiscale sign series entropy beta wave clinical diagnosis
  • 相关文献

参考文献7

二级参考文献66

  • 1李锦,宁新宝.短时心率变异性信号的基本尺度熵分析[J].科学通报,2005,50(14):1438-1441. 被引量:24
  • 2宁艳,江朝晖,安滨,冯焕清.睡眠生理参数的去趋势波动分析[J].生物医学工程学杂志,2007,24(2):249-252. 被引量:9
  • 3Costa M, Goldberger A L, Peng C K. Multiscale entropy analysis of biological signals. Phys Rev E, 2005, 71:021906
  • 4Martins J F, Santos P J, Pires A J, et al. Entropy-based choice of a neural network drive model. IEEE Trans Ind Electr, 2007, 54(1): 110--116
  • 5Pincus S M. Approximate entropy as an irregularity measure for financial data. Econom Rev, 2008, 27(4): 329--362
  • 6Daw C S, Finney C E A, Tracy E R. A review of symbolic analysis of experimental data. Rev Sci Instrum, 2003, 74:915--930
  • 7Wessel N, Ziehmann C, Kurths J, et al. Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates. Phys Rev E, 2000, 61: 733--739
  • 8Guzzetti S, Borroni E, Garbelli P E. Symbolic dynamics of heart rate variability: A probe to investigate cardiac autonomic modulation. Circulation, 2005, 112:465--470
  • 9Shannon C E. A mathematical theory of communication. Bell Syst Tech, 1948, 27(3): 379--423
  • 10Goldberger A L, Amaral L A N, Glass L, et al. PhysioBank, physioToolkit, and physioNet: Components of a new research resource for complex physiologic signals. Circulation, 2000, 101 (23): e215--e220

共引文献35

同被引文献74

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部