期刊文献+

一类最大度为3的图的L(2,1)-边标号的有效算法 被引量:1

An Efficient Algorithm for L( 2,1)-ed Ge-labelling of Graphs with Maximum Degree 3
下载PDF
导出
摘要 主要研究了一类其线图最大度为3的图的L(2,1)-边标号,给出了一个有效算法在线性时间之内可以找到该类图的9-L(2,1)-边标号,同时验证了Griggs和Yeh猜想对于该图类成立. In this paper, we consider the L(2,1 ) -edGe-labelling of a class of graphs of maximum degree three. We present a linear algorithm to find a 9-L (2,1) -edGe-labelling and verify the correctness of the conjecture of Griggs and Yeh for the graph class considered.
作者 叶林 郭健红
出处 《绍兴文理学院学报》 2016年第9期33-35,共3页 Journal of Shaoxing University
关键词 边-L(2 1)-标号 标号数 最大度 有效算法 edGe-L(2, 1 )-labelling labelling number maximum degree efficient algorithm
  • 相关文献

参考文献1

二级参考文献16

  • 13. A. BONDY, U. S. P. MURTY. Graph Theory. Springer, New York, 2008.
  • 2T. CALAMONERI. The L(h, k)-labeling problem: A updated survey and annotated bibliograhpy. Comput. J., 2011, 54(8): 1344-1371.
  • 3T. CALAMONERI, A. PELC R. PETR.ESCHI. Labeling trees with a condition at distance two. Discrete Math., 2006, 306(14): 1534-1539.
  • 4Qin CHEN, Wensong LIN. L(j, k)-labelings and L(j, k)-edge-labelings of graphs. Ars Combin., 2012, 106: 161-172.
  • 5J. P. GEORGES, D. W. MAUl:tO. Edge labelings with a condition at distance two. Ars Combin., 2004, 70: 109-128.
  • 6J. P. GEORGES, D. W. MAURO. Generalized vertex labelings with a condition at distance two, Congr. Numer., 1995, 109: 141-159.
  • 7J. P. GEORGES, D. W. MAURO. On regular graphs optimally labeled with a condition at distance two. SIAM J. Discrete Math., 2003, 17(2): 320--331.
  • 8J. R. GRIGGS, X. T. JIN. Rea/number chaxmel assignments for lattices. SIAM J. Discrete Math., 2008, 22(3): 996-1021.
  • 9J. R. GRIGGS, X. T. JIN. Recent progress in mathematics and engineering on optimal graph labellings with distance conditions, J. Comb. Optim., 2007, 14(2-3): 249-257.
  • 10J. It. GRIGGS, R. K. YEH. Labelling graphs with a condition at distance 2. SIAM J. Discrete Math., 1992, 5(4): 586-595.

共引文献1

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部