期刊文献+

基于视觉刺激的运动想象实时系统设计 被引量:1

Online system based on visual stimulation for motor imagery
下载PDF
导出
摘要 以Matlab软件为平台,搭建了一种基于视觉刺激的实时脑机接口系统,选用共空间模式和支持向量机做实时信号处理,对5名被试各进行3次实验。实验结果表明:实时系统的最高正确率为90%,平均正确率为83%;采用的特征提取和模式识别算法具有较高的实时识别正确率和识别速度,设计的系统具有较高的可行性。 An online system for brain computer interface based on visual stimulation is built on the Matlab platform. The online signal processing is done by using common space model and support vector machine. The test results show that the highest accurate rate of real time system is 90%, the average correct rate of the real-time system is 83% and the system designed in this paper and the feature extraction and pattern recognition algorithm has a high recognition rate and recognition speed. It can meet the requirements of online system and classification of brain computer interface.
作者 赵丽 王宣方
出处 《天津职业技术师范大学学报》 2016年第4期1-4,共4页 Journal of Tianjin University of Technology and Education
基金 国家自然科学基金资助项目(61178081) 天津市应用基础与前沿计划重点项目(C14JCZDJC36300)
关键词 视觉刺激 运动想象 实时系统 visual stimulation motor imagery online system
  • 相关文献

参考文献2

二级参考文献18

  • 1Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia [ J ]. Nature, 2006,442(13) : 164- 171.
  • 2Mason SG, Bashashati A, Fatourechi M, et al. A comprehensive survey of brain interface technology designs[J]. Ann Biomed Eng, 2007, 35:137- 169.
  • 3Bashashati A, Fatourechi M, Ward RK, et al. TOPICAL REVIEW: A survey of signal processing algorithms in braincomputer interfaces based on electrical brain signals[J]. Journal of Neural Engineering, 2007,4: R32- R57.
  • 4Lotte F, Congedo M, L'ecuyer A, et al. TOPICAL REVIEW: A review of classification algorithms for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2007,4:R1 - R13.
  • 5Formaggio E, Storti S F, Galazzo I B, etal. Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements[n.Journal of Neuroengineering and Rehabilitation, 2013, 100) :24.
  • 6Lotte F, Congedo M, Lecuyer A, et al. A review of classification algorithms for EEG-based brain?computer interfaces[J].Journal of Neural Engineering, 2007, 4(2) :R1-R13.
  • 7Iturrate I, AntelisJ M, Kubler A, et al. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation[J]. IEEE Transactions on Robotics, 2009, 25(3) :614-627.
  • 8WolpawJ R. Ramoser H. McFarland DJ. etal. EEG-based communication: improved accuracy by response verification[]]. IEEE Transactions on Rehabilitation Engineering. 1998. 6(3): 326-333.
  • 9Roberts SJ. Penny W D. Real-time brain computer interfacing: A preliminary study using Bayesian learning[J]. Medical and Biological Engineering and Computing. 2000. 38(1): 56-6l.
  • 10Blanchard G. Blankertz B. BCl competition 2003- Data Set IIa: Spatial patterns of self-controlled brain rhythm modulations[J]. IEEE Transactions on Biomedical Engineering. 2004.51(6) :1062-1066.

共引文献71

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部