期刊文献+

基于CEEMDAN的雷达信号脉内细微特征提取法 被引量:14

Subtle intrapulse feature extraction based on CEEMDAN for radar signals
下载PDF
导出
摘要 有效的信号特征提取是高精度雷达辐射源识别的基础,以脉冲描述字为代表的传统特征已无法满足复杂电磁环境的需要。本文提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)的有效雷达辐射源脉内细微特征提取算法。雷达信号由对非平稳、非线性信号尤为有效的CEEMDAN分解产生的个别分量重构,抑噪效果通过1 000次蒙特卡罗实验得到验证,同时设计基于该重构的一种脉内特征空间。本文方法与主流特征提取方法的识别精度在6部雷达辐射源产生的3000个不同脉内调制的加噪信号样本上进行了实验对比,结果表明不同种类信号样本在本文特征空间中清晰可分,本文方法较之主流方法更加精确,尤其在0 d B信噪比(SNR)下仍保持90%以上的高精度。 Effective signal feature extraction builds the foundation of highly accurate radar emitter identi- fication, a key function of the electronic warfare. Conventional features used in practice such as the pulse de- scription words cannot fulfill the task in complex electromagnetic environments. An effective subtle intrapulse radar feature extraction method based on the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) was proposed. Radar signals were reconstructed by components provided by the CEEM- DAN decomposition process, which was highly effective for non-stationary and nonlinear signals; the de-noi- sing effect of the reconstruction on radar signals was validated through 1 000 Monte Carlo experiments, and an intrapulse feature space based on the reconstruction was designed. The identification accuracy of the proposed feature space was compared to that of the mainstream methods in the area, on 3 000 noise-contaminated signal samples supposed to be generated by 6 radar emitters, with different intrapulse modulation. Experimental re- sults show that the samples are totally distinguishable in the proposed feature space, and the proposed method is more accurate in the comparison, especially in highly noisy environment, with accuracy above 90% at 0 dB signal to noise ratio (SNR).
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第11期2532-2539,共8页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(61379104) 航空科学基金(20152096019)~~
关键词 特征提取 自适应噪声完备集合经验模态分解(CEEMDAN) 经验模态分解 噪声协助 雷达辐射源识别 信号重构 feature extraction complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) empirical mode decomposition noise assisted radar emitter identification signal reconstruc-tion
  • 相关文献

参考文献2

二级参考文献39

  • 1关欣,何友,衣晓.一种新的基于粗集的辐射源信号识别模型[J].宇航学报,2007,28(3):685-688. 被引量:15
  • 2龚亮亮,罗景青,吴世龙.一种基于模板脉冲序列的雷达辐射源识别方法[J].现代防御技术,2008(5):130-134. 被引量:20
  • 3王杰贵,靳学明,罗景青.基于ESM与ELINT信息融合的机载辐射源识别[J].电子学报,2006,34(3):424-428. 被引量:31
  • 4Spezio A E. Electronic warfare systems [ J ]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50 ( 3 ) : 633 - 644.
  • 5Roe J, Cussons S, Fehham A. Knowledge-based signal processing for radar ESM systems[ J]. IEE Proc. Artificial Intelligence in Signal Processing, 1990, 137(5) : 293 -301.
  • 6Huo Q, Lee C. A Bayesian predictive classification approach to robust speech recognition [ J ]. IEEE Transactions on Speech and Processing, 2000, 8 ( 2 ) : 200 - 204.
  • 7Luciano A M, Savastano M. Fuzzy identification of systems with unsupervised learning[ J]. IEEE Transactions on Systems, Man, and Cybernetics, 1997, 27( 1 ) : 138 - 141.
  • 8Zuo W M, Zhang D, Wang K Q. On kernel difference-weighted k-nearest neighbor classification[ J]. Pattern Analysis and Applications, 2008, 11 (3 - 4 ) : 247 - 257.
  • 9Willson G B. Radar classification using a neural network [ J ]. Proc. of Applications of Artificial Neural Networks, SPIE, 1990, 1294:200-210.
  • 10Shieh C, Lin C. A vector neural network for emitter identification [ J]. IEEE Transactions on Antennas and Propagation, 2002, 50 (8) : 1120 -1127.

共引文献21

同被引文献119

引证文献14

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部