期刊文献+

基于分数阶微分和SIFT算法的图像匹配方法研究 被引量:4

Research on Image Matching Method Based on Fractional Order Differential and SIFT Algorithm
下载PDF
导出
摘要 提出了一种采用分数阶微分与尺度不变特征变换算法(SIFT)相结合的方式进行图像识别及匹配方法。该方法首先采用分数阶微分方法对图像的细节纹理部分进行加强,从而提高图像的分辨率,然后采用尺度不变特征变换算法对旋转缩放后的图像进行特征关键点提取和匹配,从而提高图像识别的准确率。应用该方法对Lena图像进行图像处理实验,结果表明:采用阶次为0.6的分数阶微分算法与SIFT相结合可最大化地提取图像的关键点和提高图像匹配的准确率(94.59%)。 In this paper,a novel method of image recognition and matching based on fractional order differential and scale invariant feature transform(SIFT)was proposed.In this method,the details of the image were improved by using the fractional order differential method firstly,then the SIFT algorithm was used to extract and match the feature points of the image,and under the above method,the accuracy of image recognition was improved.An experimental study on Lena image was carried out in this paper,the experimental results show that the accuracy of image matching can be improved to 94.59% with the proposed method based on fractional order(0.6)differential and SIFT algorithm.
作者 孙奇 刘海燕
出处 《半导体光电》 CAS 北大核心 2016年第6期890-893,898,共5页 Semiconductor Optoelectronics
基金 国家自然基金青年基金项目(51409290)
关键词 分数阶微分 SIFT 关键点 图像匹配 fractional order differentiation SIFT key points image matching
  • 相关文献

参考文献9

二级参考文献202

  • 1许强.关于一类函数的分数阶微积分(英文)[J].徐州师范大学学报(自然科学版),2006,24(4):19-23. 被引量:2
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3蒲亦非,袁晓,廖科,陈忠林,周激流.现代信号分析与处理中分数阶微积分的五种数值实现算法[J].四川大学学报(工程科学版),2005,37(5):118-124. 被引量:31
  • 4刘健庄,谢维信,高新波,马堃.基于Hausdorff距离和遗传算法的物体匹配方法[J].电子学报,1996,24(4):1-6. 被引量:24
  • 5Du-Ming T, Ya-Hui T. Rotation-invariant pattern matching with color ring-projection[J]. Pattern Recognition, 2002,35 (3) : 131- 141.
  • 6Balslev I,Doring K, Erikson R D. Weighted central moments in pattern recognition[J]. Pattern Recognition, 2000, 21 (4) : 381- 384.
  • 7Prieto M S,Allen A R. A similarity metric for edge images[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2003, 25(10) : 1265-1273.
  • 8Schiele B, Crowley J L. Recognition Without Correspondence Using Multidimensional Receptive Field Histograms[J]. Int'l Journal of Computer Vision, 2000,36 (1) : 31-50.
  • 9Wang Y T,Zhang D Z,Tian J W. Topological clustering and its application for discarding wide-baseline mismatches[J]. Optical Engineering, 2008,47 ( 4 ).
  • 10Lowe D G. Distinctive image features from scale-invariant keypoints[J]. Int'l Journal of Computer Vision, 2004,2 (60) : 91- 110.

共引文献172

同被引文献29

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部