摘要
Ultrasonic vibration with different powers from 0 k W to 1.6 k W was applied during the tungsten inert gas welding-brazing of Mg/Ti.The microstructures,mechanical properties and corrosion resistance of the ultrasonic assisted tungsten inert gas(U-TIG) welded-brazed Mg/Ti joint were characterized.The results showed that,without being subjected to ultrasonic vibration,coarse columnar α-Mg grains occurred in the fusion zone of Mg/Ti joint.However,with ultrasonic power of 1.2 k W,the average grain size of columnar α-Mg grains was refined from 200 μm to about 50 μm and the tensile strength of joints increased^18% up to 228 MPa.Besides,high fraction of grain boundaries was introduced by grain refinement,contributing to improve the corrosion resistance in two ways:(i) accelerating the formation of Mg(OH)2protective layer and(ii) reducing the mismatch and disorder between Mg(OH)2 protective layer and Mg alloy surface.
Ultrasonic vibration with different powers from 0 k W to 1.6 k W was applied during the tungsten inert gas welding-brazing of Mg/Ti.The microstructures,mechanical properties and corrosion resistance of the ultrasonic assisted tungsten inert gas(U-TIG) welded-brazed Mg/Ti joint were characterized.The results showed that,without being subjected to ultrasonic vibration,coarse columnar α-Mg grains occurred in the fusion zone of Mg/Ti joint.However,with ultrasonic power of 1.2 k W,the average grain size of columnar α-Mg grains was refined from 200 μm to about 50 μm and the tensile strength of joints increased^18% up to 228 MPa.Besides,high fraction of grain boundaries was introduced by grain refinement,contributing to improve the corrosion resistance in two ways:(i) accelerating the formation of Mg(OH)2protective layer and(ii) reducing the mismatch and disorder between Mg(OH)2 protective layer and Mg alloy surface.
基金
financially supported by the National Natural Science Foundation of China(No.51205428)
the Fundamental Research Funds for the Central Universities(Nos.CDJZR13130040and CDJZR12130047)