期刊文献+

下伏空洞地基极限承载力与破坏模式上限有限元法 被引量:9

Upper bound finite element method for ultimate bearing capacity and failure mechanism of subgrade above void
下载PDF
导出
摘要 地基极限承载力的确定对于下伏空洞地区基础设计和施工具有重要意义。采用上限有限元法对地基破坏时的极限状态进行数值模拟。首先,简要介绍上限有限元法的基本原理与计算过程;进而提出合理的计算假定,建立可考虑多种影响因素的计算模型;其次,利用上限有限元法计算出多种工况下的地基极限承载力上限解,按Tergaghi建议的地基承载力公式,得到承载力系数N_c、N_q、N_g,并对其影响因素进行分析;最后,根据大量的能量耗散图及速度场图提出3类典型的破坏模式,并对其影响因素进行分析。研究表明:随着内摩擦角j的增大,N_c和N_q均增大,而当j较大时,N_g才出现正数,且随着j增大而增大;随着空洞顶板厚度与基础宽度之比H/B的增大,N_c和N_q均增大。而当j较小时,N_g随着H/B的增大而减少;当j较大时,N_g随着H/B的增加而增加。N_c、N_q和N_g均随着D/B的增大而减少。下伏空洞地基存在3种典型的破坏模式:冲切破坏模式、冲切剪压破坏模式和Prandtl破坏模式。 Determining ultimate bearing capacity problem is of great importance in design and construction of the subgrade above void. The limit damage state of subgrade is numerically simulated by using upper bound finite element method. Firstly, the basic principles and calculation process of the upper bound finite element method are briefly introduced. Secondly, reasonable calculation assumption is proposed; and then a numerical model that can take various factors into consideration is established. Thirdly, the upper-limit solutions of ultimate bearing capacity under various conditions are calculated by using upper bound finite element method; and the bearing capacity coefficients Nc, Nq, Nγ are computed by using the formula of ultimate bearing capacity, as Tergaghi suggested; and then their influencing factors are analyzed. Finally, based on the large amount of energy dissipation and velocity field pattern analysis, three typical failure modes are presented and their influencing factors are analyzed. It is shown that Nc and Nq increase with the increasing of internal friction angle of φ, and when φ is larger, Nr is positive number, and increases with the increasing of φ; Both Ne and Nq increase with the increasing of the ratio of viod roof thickness and footing width H/B; and when φ is smaller, Nr decreases with the increase of H/B. When φ is larger, Nγ increases with the increasing of H/B; and Nc, Nq and Nγ both decrease with the increase of D/B. The subgrade above void has three typical failure mechanisms: punching failure mode, punching shear press failure mode and Prandtl failure mode.
出处 《岩土力学》 EI CAS CSCD 北大核心 2017年第1期229-236,246,共9页 Rock and Soil Mechanics
基金 国家自然科学基金项目(No.51278187)~~
关键词 空洞 上限法 有限元 承载力系数 破坏模式 void upper bound solution finite elements bearing capacity coefficient failure mechanism
  • 相关文献

参考文献6

二级参考文献54

  • 1阳军生,张军,张起森,张家生.溶洞上方圆形基础地基极限承载力有限元分析[J].岩石力学与工程学报,2005,24(2):296-301. 被引量:63
  • 2胡庆国,张可能,阳军生.溶洞上方条形基础地基极限承载力有限元分析[J].中南大学学报(自然科学版),2005,36(4):694-697. 被引量:26
  • 3陈惠发.极限分析与土体塑性[M].人民交通出版社,1995..
  • 4Wang M C, Jao M, Hsieh C W. Effect of underground cavity on footing interaction[A]. In: Proc. of X Ⅲ ICSMFE[C]. New Delhi: [s.n.], 1994. 575 - 578.
  • 5Azam G, Wang M C. Performance of strip footing above voids in clay[J]. Journal of Geotechnical Engineering, ASCE, 1990, 110(3):37 - 58.
  • 6Baus R L, Wang M C. Beating capacity of strip footing above void[J].Journal of Geotechnical Engineering, ASCE, 1983, 117(5): 753 -765.
  • 7ABAQUS. ABAQUS/Standard user's and theory manuals version 6.2[CP]. Rhode Island: Hibbitt, Karlsson & Sorensen, Inc., 2001.
  • 8Hoek E, Brown E T. Practical estimations of rock mass strength[J]. Int.J. Rock Mech. Min. Sci., 1997, 34(8): 1 165 - 1 186.
  • 9Vesic A. Bearing capacity of deep foundation in sand[J]. National Academy of Science, National Research Concil, Highway Research Board, 1963, 39(2): 112-153.
  • 10Desai C S, Christian T J. Numerical Method in Geotechnical Engineering[M]. New York: McGraw - Hill Book Co., 1977.

共引文献106

同被引文献72

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部