摘要
定义了基于p进Vilenkin群的傅里叶-沃尔什变换,介绍了Haar小波函数系,多分辨分析和函数的(拟)Haar表示方法以及函数的沃尔什表示形式.最后研究了如何利用函数的沃尔什表示和Gibbs导数的性质证明n阶线性微分方程和一阶齐次波动方程解的存在唯一性.
In this paper, Fourier-Walsh transform is defined based on p-adic Vilenkin groups . Furthermore, Haar wavelets, multiresolution analysis and (quasi-Haar) Haar representation of functions as well as the representation of Walsh functions are introduced. Finally, an algorithm for the existence and uniqueness of solutions of a linear differential equations of order n and the one-dimensional homogeneous wave equation are presented.
作者
聂伟平
师东利
李万社
NIE Wei-ping SHI Dong-li LI Wan-she(College of Mathematics and Information Science, Shaanxi Normal University , Xi'an 710062, China)
出处
《南阳师范学院学报》
CAS
2016年第12期1-4,共4页
Journal of Nanyang Normal University