期刊文献+

基于模态振型和平稳小波变换的悬臂梁微小缺陷识别研究 被引量:8

Research on small damage detection in cantilever beam based on vibration mode and stationary wavelet transform
下载PDF
导出
摘要 结构损伤识别方法有很多种,通常结构振动模态振型对缺陷的损伤识别较为敏感,振型体现结构的固有属性及结构局部的特征,可以用于检测缺陷的存在及其位置。但是缺陷比较微小时,仅仅通过振型难以进行损伤识别。因此本文通过对振型进行平稳小波变换处理来检测悬臂梁的微小缺陷。通过有限元模态分析获得含不同缺陷深度、不同缺陷宽度、不同缺陷位置的悬臂梁模型的振型并利用平稳小波变换进行分析处理。结果表明:该方法可以准确判断缺陷的存在及其位置,并且平稳小波细节系数突变峰值随着缺陷深度增大而增大,随着缺陷宽度增大而增大;另外,该方法受振型节点影响,在工程实际应用时应综合前几阶次振型进行缺陷识别。 Many methods can be used to detect structural defects. In general, vibration modes are very sensitive to the existence of defects. The information of modes includes the local feature information of investigated structure and the inherent properties, so it can be used to detect the presence of defects and to identify their locations. However, when the defects are small, it is difficult to determine the existence of the defects by relying on the vibration modal shapes. A new method is proposed to detect the weak defect information in cantilever beam by using the Stationary Wavelet Transform(SWT) method to analyze the vibration modal shapes. Finite element modal analysis is employed to mimic the modal shape of a cracked cantilevered beam with various defect depths, widths and positions. SWT is applied to obtain the first four modal shapes. Results obtained demonstrate that the proposed method can be used for the identification of small defects. Meanwhile, the peak of stationary wavelet detail coefficient curve would increase with the increase of the defect depth and defect width. Furthermore, in the engineering applications, it is suggested to integrate several vibration modal shapes to identify defects to minimize the vibration node effect.
出处 《应用力学学报》 CAS CSCD 北大核心 2016年第6期1016-1021,1119,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(11372074 11402054) 教育部高等学校博士学科点科研基金(博导类 20133514110008) 福建省杰出青年基金滚动项目(2014J07007)
关键词 悬臂梁 微小缺陷 损伤识别 振型 平稳小波变换 有限元分析 cantilever beam small damage damage detection vibration mode stationary wavelet transform finite element analysis
  • 相关文献

参考文献6

二级参考文献52

  • 1邱颖,任青文,朱建华.基于小波奇异性的梁结构损伤诊断[J].工程力学,2005,22(S1):146-151. 被引量:14
  • 2李建跃.小波分析在机械故障诊断中的应用[J].电子测量技术,2007,30(3):42-43. 被引量:2
  • 3[1]J T Kim,N Stubbs.Improved damage identification method based on model information[J].Journal of Sound and Vibration,2002,252(2):223-238.
  • 4[2]Jong Jae Lee,Jong Won Lee,Jin Hak Yi,et al.Neural networks-based damage detection for bridges considering errors in baseline finite element models[J].Journal of Sound and Vibration,2005,(280):555-578.
  • 5[4]K M Liew,Q Wang.Application of wavelet theory for crack identification in structures[J].Journal of Engineering Mechanics,ASCE,1998,124 (2):152-157.
  • 6[5]Quan Wang,Xiaomin Deng.Damage detection with spatial wavelets[J].International Journal of Solids and Structures,1999,(36):3443-3468.
  • 7[6]E Douka,S Loutridis,A Trochidis.Crack identication in beams using wavelet analysis[J].International Journal of Solids and Structures,2003,(40):3557-3569.
  • 8[8]Chih-Chieh Chang,Lien-Wen Chen.Detection of the location and size of cracks in the multiple cracked beam by spatial wavelet based approach[J].Mechanical Systems and Signal Processing,2005,(19):139-155.
  • 9[10]J-C Hong,Y Y Kim,H C Lee,et al.Damage detection using the lipschitz exponent estimated by the wavelet transform:Applications to vibration models of a beam[J].International Journal of Solids and Structures,2002,(39):1803-1816.
  • 10程正兴.小波分析算法与应用[M].两安:西安交通大学出版社,2002.

共引文献92

同被引文献69

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部