期刊文献+

加权核范数的矩阵恢复正则化算法

Regularization algorithm for matrix recovery based on reweighted nuclear norm
下载PDF
导出
摘要 在压缩感知、矩阵恢复等研究领域,弹性正则化方法引起了广泛的关注.由于该方法可以避免数据建模时(特别是解决复杂问题时)解出现大的波动,从而被视为解决相关问题的优秀方法之一.针对以上情况,提出基于Schatten p-norm最小化的矩阵恢复的弹性正则化模型,旨在加强解决复杂问题时的解的稳定性并改进矩阵恢复研究领域中基于核范数最小化逼近秩函数这一传统方法的缺陷.同时,为了解决提出的非凸模型,采用交替迭代算法和MM算法求解所提出的模型.实验结果表明,所提出的算法能够有效地恢复测量值较少的矩阵. Whether in the field of compressive sensing or matrix recovery,the elastic-net regularization has attracted wide attention.It is a successful approach in statistical modeling which can avoid large variations which always occur in estimating complex models.In order to improve the defect of the nuclear norm minimization which requires more measurement for exact recovery of low rank solution and enhance the stability of the solution,we proposed a new matrix elastic-net regularization method based on Schatten p-norm minimization(MEN-Sp).To minimize this no-convex model,alternating iterative algorithm and MM algorithm were adopted.And the superiority of the MEN-Sp regularization algorithm for recovering the matrix with fewer measurement was also proved by the simulation experiment.
出处 《中国计量大学学报》 2016年第4期471-479,共9页 Journal of China University of Metrology
基金 国家自然科学基金资助项目(No.61672477 61571410 91330118)
关键词 矩阵恢复 弹性正则化 Schatten p-范数 交替迭代算法 MM算法 matrix recovery elastic-net regularization Schatten p-norm alternate iterating algorithm MM algorithm
  • 相关文献

参考文献1

二级参考文献25

  • 1Wei Zhiqiang,Ji Xiaopeng,Wang Peng.Real-time moving object detection for video monitoring systems[J].Journal of Systems Engineering and Electronics,2006,17(4):731-736. 被引量:18
  • 2LIPTON A J,FUJIYOSHI H,PATIL R S.Moving target classification and tracking from real-time video[C]//Proceedings of 4th IEEE Workshop on Applications of Computer Vision.New Jersey:IEEE,1998:8-14.
  • 3CHEN Baisheng,LEI Yunqi,LI Wangwei.A novel background model for real-time vehicle detection[C]//Proceedings of 7th International Conference on Signal Processing.Beijing:IEEE,2004,2:1276-1279.
  • 4WREN C R,AZARBAYEJAIN A,DARRELL T.Pfinder:real-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
  • 5FRIEDMAN N,RUSSELL S.Image segmentation in video sequences:aprobabilistic approach[C]//Proceedings of13th Conference on Uncertainty in Artificial Intelligence(UAI).San Francisco:Morgan Kaufmann Publishers Inc,1997:175-181.
  • 6KIM K,CHALIDABHONGSE T H,HARWOOD D,et al.Real-time foreground-background segmentation using Codebook Model[J].Real-Time Imaging,2005,11(3):172-185.
  • 7ILYAS A,SCUTURICI M,MIGUET S.Real time foreground-background segmentation using a modified Codebook Model[C]//Proceedings of 6th IEEE International Conference on Advanced Video and Signal Based Surveillance.Genova:IEEE,2009:454-459.
  • 8ELGAMMAL A,DURAISWAMI R,HARWOOD D,et al.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of the IEEE,2002,90(7):1151-1163.
  • 9CANDS E J,LI Xiaodong,MA Yi,et al.Robust principal component analysis?[J].Journal of the ACM(JACM),2011,58(3):1-37.
  • 10NATARAJAN B K.Sparse approximate solutions to linear systems[J].SIAM Journal on Computing,1995,24(2):227-234.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部