期刊文献+

多孔氢键金属-有机框架材料对乙炔和二氧化碳的吸附分离 被引量:6

Porous hydrogen-bonded organometallic frameworks for adsorption separation of acetylene and carbon dioxide
下载PDF
导出
摘要 以腺嘌呤和溴化铜(氯化铜)为原料,采用慢扩散合成法,合成多孔氢键金属-有机框架材料MPM-1-Br和MPM-1-Cl。采用SEM、PXRD、TGA及比表面积分析等技术对材料进行综合表征,并测定了此二种同构多孔氢键金属-有机框架材料对乙炔和二氧化碳单组分气体的吸附等温线。实验结果表明,MPM-1-Br和MPM-1-Cl的比表面积分别为373 m^2·g^(-1)和417 m^2·g^(-1),且在<240℃的温度范围内有良好的稳定性;在298 K和总压100 kPa下,通过IAST理论计算得到其对C_2H_2/CO_2混合气体(体积比50:50)的吸附选择性分别达到了3.8和3.0,与HKUST-1(4.7)和UTSA-30(3.3)等金属-有机框架材料有相当的分离性能。 Two porous hydrogen-bonded organometallic frameworks, termed as MPM-1-Br and MPM-1-Cl,were synthesized from adenine and CuBr2(or CuCl2) at room temperature by slow diffusion method. The synthesized materials were characterized by analysis techniques including SEM, PXRD, TGA and specific surface area analysis. Single-component adsorption isotherms for acetylene and carbon dioxide on these materials were also determined.The experimental results revealed that MPM-1-Br and MPM-1-Cl have moderately high BET surface(373 m2·g-1, 417 m2·g-1), and they show good thermo stability at temperature up to 240℃. The calculations were performed using the ideal adsorbed solution theory(IAST) based on the single-component adsorption isotherms, obtaining the adsorption selectivity of MPM-1-Br and MPM-1-Cl for binary mixture of acetylene and carbon dioxide(50:50, volume ratio) to be 3.8 and 3.0 at temperature of 298 K and total pressure of 100 kPa, respectively, which are comparable to those on HKUST-1 and UTSA-30.
出处 《化工学报》 EI CAS CSCD 北大核心 2017年第1期154-162,共9页 CIESC Journal
基金 国家自然科学基金项目(21376205,U1407134)~~
关键词 氢键金属-有机框架材料 慢扩散合成法 吸附 分离 乙炔 二氧化碳 hydrogen-bonded organometallic framework low diffusion method adsorption separation acetylene carbon dioxide
  • 相关文献

参考文献3

二级参考文献100

  • 1Bae Y S, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angew. Chem. Int. Ed., 2011, 50(49): 11586-11589.
  • 2Ferey G, Serre C, Devie T, Maurin G, Jobic H, Llewellyn P L, De Weireld G, Vimont A, Daturi M, Chang J S. Why hybrid porous solids capture greenhouse gases? [J]. Chem. Soc. Rev., 2011, 40(2): 550-562.
  • 3Wu D, Yang Q, Zhong C, Liu D, Huang H, Zhang W, Maurin G. Revealing the structure-property relationships of metal-organic frameworks for CO2 capture from flue gas[J]. Langmuir, 2012, 28(33): 12094-12099.
  • 4Yang Q, Wiersum A D, Llewellyn P L, Guillerm V, Serre C, Maurin G. Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration[J]. Chem. Commun., 2011, 47:9603-9605.
  • 5Frrey G. Hybrid porous solids: past, present, future[J]. Chem. Soc. Rev., 2008, 37(1): 191-214.
  • 6Yaghi O M, O'Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941): 705-714.
  • 7Liu D, Zhong C. Understanding gas separation in metal-organic frameworks using computer modeling[J], J. Mater, Chem., 2010, 20(46): 10308-10318.
  • 8Huang H, Zhang W, Liu D, Liu B, Chen G, Zhong C. Effect of temperature on gas adsorption and separation in ZIF-8: a combined experimental and molecular simulation study[J]. Chem. Eng. Sci., 2011, 66:6297-6305.
  • 9Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Metal-organic framework materials as catalysts[J]. Chem. Soc. Rev., 2009, 38(5): 1450-1459.
  • 10Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery[J]. Angem Chem. lnt. Ed., 2007, 46(40): 7548-7558.

共引文献10

同被引文献37

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部