期刊文献+

基于CS-SD的车载环境下实时行人检测模型 被引量:2

Model of real-time pedestrian detection under vehicle environment based on CS-SD
原文传递
导出
摘要 针对车辆辅助驾驶系统中行人检测的实时性问题,提出一种基于路面边缘线标定结合显著性纹理检测(CS-SD)的算法和定位方向梯度直方图(L-HOG)的行人检测模型,应用CS-SD算法替代穷尽搜索快速标定图像中的行人区域,应用L-HOG快速提取行人特征,并采用附加核心的支持向量机(AK-SVM)进行高效目标分类。分析结果表明:在个人计算机上对包含832个行人的500幅图像进行检测时,模型正确检测720个行人,检测率为86.5%,误检率为4.1%,检测时间为39ms;在基于BF609的车载行人检测系统上对包含988个行人的48 400幅图像进行检测时,模型正确检测861个行人,漏检127个行人,误检13个行人,检测速度为20fps。可见,提出的行人检测模型在不降低检测率的前提下,可以达到满意的检测速度,并且可以用于实时行人检测车载设备。 In order to solve the real-time problem in the advanced driver assistant system,a model of pedestrian detection based on the calibration of side-of-pavement line and saliency texture detection(CS-SD)and the location histogram of oriented gradient(L-HOG)was proposed.The CS-SD algorithm was used instead of exhaustive search to quickly mark pedestrian area in the image.The L-HOG was used to quickly extract pedestrian feature,and additive kernel support vector machine(AK-SVM)was used to efficiently classify detected objects.Analysis result shows that when 500 images including 832 pedestrians on personal computer are detected,the model detects 720 pedestrians correctly,the detection rate is 86.5%,the error rate is 4.1%,and the detection time is 39 ms.When 48 400 images including 988 pedestrians on vehicle pedestrian detection system based on BF609 are detected,the model detects 861 pedestrians correctly,misses 127 pedestrians and detects 13 pedestrians in error.The detection speed is 20 fps.Underthe premise of not reducing the detection rate,the proposed pedestrian detection model can reach satisfying detection speed and can be used in vehicle equipment of real-time pedestrian detection.
作者 郭爱英 徐美华 冉峰 王琪 GUO Ai-ying XU Mei-hua RAN Feng WANG Qi(School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China Department of Meehatronic Engineering, Shanxi Vocational and Technical College of Light Industry, Taiyuan 030013, Shanxi, China Microelectronics Research and Development Center, Shanghai University, Shanghai 200072, China)
出处 《交通运输工程学报》 EI CSCD 北大核心 2016年第6期132-139,共8页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(61376028)
关键词 行人检测 方向梯度直方图 行人区域 特征提取 车载环境 pedestrian detection histogram of oriented gradient pedestrian area feature extraction vehicle equipment
  • 相关文献

参考文献2

二级参考文献13

  • 1Enzweiler M,Gavrila D M.Monocular pedestrian detection:survey and experiments[J].Pattern Analysis and MachineIntelligence,IEEE Transactions on,2009,31(12):2179-2195.
  • 2Viola P,Jones M J.Robust real-time face detection[J].International Journal of Computer Vision,2004,57(2):137-154.
  • 3Friedman J,Hastie T,Tibshirani R.Additive logisticregression:A statistical view of boosting[J].Annals ofStatistics,2000,28(2):337-374.
  • 4Viola P,Jones M J,Snow D.Detecting pedestrians usingpatterns of motion and appearance[J].International Journalof Computer Vision,2005,63(2):153-161.
  • 5Dalal N,Triggs B.Histograms of oriented gradients forhuman detection[C] //Computer Vision and PatternRecognition(CVPR),IEEE Computer Society Conference on.2005:886-893.
  • 6Vapnik V,Vladimir N.The Nature of Statistical LearningTheory[M].Berlin,Germany:Springer-Verlag,1995:138-151.
  • 7Qiang Z,Mei-Chen Y,Kwang-Ting C,et al.Fast humandetection using a cascade of histograms of oriented gradients[C] //Computer Vision and Pattern Recognition(CVPR),IEEE Computer Society Conference on.2006:1491-1498.
  • 8Zhe L,Gang H,Davis L S.Multiple instance feature forrobust part-based object detection[C] //Computer Visionand Pattern Recognition(CVPR),IEEE Computer SocietyConference on.2009:405-412.
  • 9Dollar P,Wojek C,Schiele B,et al.Pedestrian detection:Anevaluation of the state of the art[J].Pattern Analysis andMachine Intelligence,IEEE Transactions on,2012,34(4):743-761.
  • 10Walk S,Majer N,Schindler K,et al.New features andinsights for pedestrian detection[C] //Computer Vision andPattern Recognition(CVPR),IEEE Computer SocietyConference on.2010:1030-1037.

共引文献60

同被引文献6

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部