期刊文献+

一类捕食-食饵模型解的存在性和稳定性 被引量:1

Existence and stability of solutions for a predator-prey model
下载PDF
导出
摘要 在齐次Dirichlet边界条件下,研究了一类捕食-食饵模型。证明了局部分歧解的存在性;将局部分歧延拓为整体分歧,刻画出分歧解随参数的整体走向,并且讨论了局部分歧解的稳定性;通过数值模拟分析验证了理论分析的结果。 The predator-prey model is investigated under homogeneous Dirichlet boundary tions. Firstly, the existence of the local bifurcation solutions is proved. Secondly, the local cation can be extended to global bifurcation and the jumps of the bifurcation solutions are lished, meanwhile, the stability of the local bifurcation solutions are discussed. Finally, numerical simulations are shown to support the analytical results. condi- bifur- estab- some
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期6-12,共7页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金(11271236) 陕西省自然科学基础研究计划(2014JM1003) 中央高校基本科研业务专项资金(GK201302005)
关键词 捕食-食饵 分歧 稳定性 数值模拟 predator-prey bifurcation stability numerical simulations
  • 相关文献

参考文献4

二级参考文献34

  • 1刘冠琦,史峻平,王玉文.具有强Allee影响的稳定态反应扩散方程正解的存在性[J].哈尔滨师范大学自然科学学报,2006,22(3):1-3. 被引量:2
  • 2[1]Blat J, Brown K J. Bifurcation of steady-state solutions in predator-prey and competition systems[J]. Proc Roy Soc Edinburgh, 1984, 97A: 21~34.
  • 3[2]Conway E D, Gardner R, Smoller J. Stability and bifurcation of steady state solutions for predator-prey equations[J]. Adv Appl Math, 1982, 3: 288~334.
  • 4[3]Li L, Ghoreshi A. On positive solutions of general nonlinear elliptic symbolic interacting systems[J]. Applicable Anal, 1991, 40: 281~295.
  • 5[4]Wu J H. Global bifurcation of coexistence state for the competition model in the hemostat[J]. Nonl Anal, 2000, 39: 817~835.
  • 6[5]Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues, and linearized stability[J]. Arch Rational Mech Anal, 1973, 52: 161~180.
  • 7[6]Smoller J. Shock waves and reaction-diffusion equations[M]. New York: Springer-Verlag, 1983.
  • 8Allee W C. Animal Aggregations: a Study in General Sociology[M]. Chicago: University of Chicage Press, 1931: 31-90.
  • 9Coppel W A. Some quadratic system with at most one limit cycle[J]. Dynamics Reported, 1988,1 (2): 61-88.
  • 10Hsu Sze-bi, Huang Tsy-wei. Global stability for a class of predator-prey system[J]. SIAM J Appl Mathematics 1995, 55(3): 763-783.

共引文献21

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部