期刊文献+

矩形平板和矩形阶梯板的辐射声场指向性 被引量:1

The directivity patterns of the sound radiated from a rectangular plate and stepped radiators
下载PDF
导出
摘要 利用有限元方法,提取板中各微元振幅,迭代计算了平板和阶梯板所产生的辐射声场,并测试了所加工的平板和阶梯板的声场指向性。结果表明:在平板中沿x轴与平板垂直的平面,声场指向性在轴线方向存在主瓣,但是在其他方向同时存在副瓣,副瓣声能分布较多,声能分散。在阶梯板中沿x轴与阶梯板垂直的平面,声场指向性在轴线方向存在开角较小的主瓣,声能分布主要集中在轴线方向;在沿y轴与阶梯板垂直的平面,声场指向性在轴线方向也存在开角较小的主瓣,同时在轴线方向之外存在副瓣,但副瓣声能分布较少,故声能主要集中分布在轴线方向。因此,阶梯板的声场指向性优于平板指向性,实验测试与理论计算结果相吻合。 Using finite element method,the displacement of each segment in a rectangular plate is extracted, and the radiated pressure is calculated by the directive theory of built-up point sources. The directivity patterns of a fabricated fiat plate and a stepped plate are measured. It shows that the directivity of the stepped plate radiator is better than that of the flat one. In rectangular plate radiators,directivity pattern along the x-axis of perpendicular to the fiat plate exist major lobe, but at the same time in the other direction exist side lobes. Energy distribution is decentralized. In stepped radiator, along the x-axis perpendicular to the stepped plate exist sharper lobe~ along the y-axis perpendicular to the stepped plate exist sharper major lobe, although there are side lobes in the other direction, the side lobes are very small,sound energy distribution is concentrated. It shows that the direetivity pattern of the stepped rectangular plate radiator is better than that of the rectangular plate radiator. The calculated results are in good agreement with the tested ones.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期30-33,共4页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金(11374201)
关键词 矩形平板型辐射体 矩形阶梯型辐射体 辐射声场 指向性 flat rectangular plate radiator stepped rectangular plate radiator radiated sound directivity
  • 相关文献

参考文献4

二级参考文献53

  • 1何正耀,马远良,蒋伟,张翼鹏.任意阵形水声换能器阵辐射声场计算[J].应用声学,2006,25(2):69-75. 被引量:12
  • 2何正耀,马远良.水声共形阵辐射指向性计算方法及其实验验证[J].声学学报,2007,32(3):270-274. 被引量:9
  • 3Schenck H A. Improved integral formulation for acoustic radiation problems[J]. Journal of the Acoustical Society of America, 1968, 44(1): 41-58.
  • 4Tomoki Y, Mitsuru H. Effects of mutual interactions on a phased transducer array[J]. Japanese Journal of Applied Physics, 1998, 37(5):3166-3171.
  • 5Boris A, David A B, and Corey L B. Effects of coupled vibrations on the acoustical performance of underwater cylindrical shell transducers[J]. Journal of the Acoustical Society of America, 2007, 122(6):3419-3427.
  • 6Tetsuro O, Boris A, and David A B. Broadband multimode baffled piezoelectric cylindrical shell transducers [J]. Journal of the acoustical Society of America, 2007, 121(6)3465-3471.
  • 7Hutchins D A, Schindel D W, Bashford A G, et al. Ad- vances in ultrasonic electrostatic transduction[J]. Ultrasonics, 1998, 36:(7) :1-6.
  • 8Hoffmann T L, Chen W,Koopmann G H. Experimental and numerical analysis of bimodal acoustic agglomeration[J]. Journal of Vibration and Acoustics, 1993,115(3):232-240.
  • 9Gallego-juarez J A, Rodriguez-Corral G, Gate-Garreton L. An ultrasonic transducer for high power applica- tions in gases[J]. Ultrasonics, 1978, 16(6) .. 267-271.
  • 10Barone A, Gallego-Juarez J A. Flexural vibrating free-edge plates with stepped thickness for generating high directivity ultrasonic radiation[J]. Journal of the Acoustical Society of America, 1972, 51 (3) : 953-959.

共引文献15

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部