期刊文献+

铜纳米线填充氮化硼纳米管结构和电子特性的第一性原理研究 被引量:2

First-principles study of the structural and electronic properties of copper nanowire encapsulated into boron nitride nanotube
下载PDF
导出
摘要 基于密度泛函理论框架下的第一性原理计算方法,研究了不同线径锯齿型氮化硼纳米管包裹五边形Cu纳米线复合系统的结构和电子特性。复合系统的圆筒状结构在弛豫后保持不变。计算结果表明,管-线间距约为0.34nm的CuNW@(14,0)复合系统的结构最稳定,且在费米能级附近处的能带结构为内部Cu纳米线和外部BN纳米管能带的叠加,同时Cu纳米线填充前后的量子电导不变。电荷密度分析表明,CuNW@(14,0)复合系统中传导电子仅分布在内部Cu纳米线区域,外部氮化硼纳米管相当于绝缘电缆壳。因此,该类型的纳米线缆复合系统有望应用于要求稳定传输电荷的纳机电系统和超大规模集成电路中。 By using the first-principles calculations based on the density functional theory, the structural and electronic properties of pentagonal Cu nanowires encapsulated in a series of zigzag (n,0) BNNTs have been systematically investigated. The initial shapes (cylindrical CuNWs and BNNTs) are preserved without any visible changes for the CuNW@ (n,0) combined systems. The most stabile combined system is CuNW@ (14,0) with an optimal tube-wire distance of about 0.34 nm and a simple superposition of the band structures of it% components (CuNW and (14,0) BNNT) near the Fermi level. A quantum conductance of 4G0 is obtained for both CuNW in either free-standing state or filled into BNNT. The charge density analyses also show that the electron transport will occur only through the inner CuNW and the inert outer BNNT serves well as insu- lating cable sheath. So the CuNW@ (14,0) combined system is top-priority in the ultra-large- scale integration (UI.SI) circuits and micro-electromechanical systems (MEMS) devices that de- mand steady transport of electrons.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期40-44,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 宁夏自然科学基金(NZ16019)
关键词 Cu纳米线 氮化硼纳米管 弛豫结构 电子性质 第一性原理 Cu nanowires boron nitride nanotubes~ relaxed structures~ electronic property first-principles
  • 相关文献

参考文献3

二级参考文献75

  • 1吴海平,吴希俊,刘金芳,王幼文,唐晓明.填充碳纳米管各向同性导电胶的性能[J].复合材料学报,2006,23(2):9-13. 被引量:16
  • 2Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods andnanotubes[J]. Science, 1997, 277 (5334):1 971- 1 975.
  • 3Hasmy A, Medina E. Thickness induced structural transition in suspended fcc metal nanofilms[J]. Physical Review Letters, 2002, 88(9):096103(4).
  • 4Landman U, Luedtke W D, Salisbury B E, et al. Reversible manipulations of room temperature mechanical and quantum transport properties in nanowire junctions [J]. Physical Review Letters, 1996, 77 (7): 1 362- 1 365.
  • 5Kondo Y, Takayanagi K. Gold nanobridge stabilized by surface structure[J]. Physical Review Letters, 1997, 79 (18) :3 455-3 458.
  • 6Kondo Y, Takayanagi K. Synthesis and characterization of helical multi-shell gold nanowires[J]. Science, 2000, 289 (5479) : 606-608.
  • 7Da Silva E Z, Da Silva A J R, Fazzio A. How do gold nanowires break[J]. Physical Review Letters, 2001, 87 (25):256102(4).
  • 8Wu B, Heidelberg A, Boland J J. Mechanical properties of ultrahigh-strength gold nanowires[J ]. Nature Materials, 2005(4) :525-529.
  • 9Park H S, Zimmerman J A. Stable nanobridge formation in [ 110 ] gold nanowires under tensile deformation [ J ]. Scripta Materialia, 2006, 54(6):1 127-1 132.
  • 10Rabkin E, Nam H S, Srolovitz D J. Atomistic simulation of the deformation of gold nanopillars[J]. Acta Materialia, 2007, 55(6) :2 085-2 099.

共引文献4

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部