期刊文献+

Br?nsted酸性离子液体活化电极催化制氢性能研究

Brnsted Acid Ionic Liquid Activated Electrodes Catalyze Water Electrolysis for Production of Hydrogen
下载PDF
导出
摘要 分别采用玻碳(GC)、铂(Pt)和金(Au)电极研究了在Brnsted酸性离子液体[HMIm]HSO_4中电解水制氢的催化活性,活性大小为Pt>Au>>GC。水中离子液体的含量对析氢电流影响很大,当[HMIm]HSO_4含量为30%(V/V)时,Pt电极催化电解水产氢的阈值电位高达-0.3 V(Ag丝为准参比电极,Ag QRE),在-0.5 V(Ag QRE)处电流密度高达110.52 m A/cm2,为相同条件下Au电极的15倍,GC电极的650倍。计算结果表明,Pt电极在该电解液中的反应活化能为5.68 kJ/mol。电极的高催化活性与[HMIm]HSO_4电离产生的质子有关,使水以H3O+的形式捕集电子,效率更高。 The water electrolysis for production of hydrogen in the Bronsted acid ionic liquid [ HMIm] HSO4 aqueous solutions was investigated using glassy carbon ( GC ) , platinum ( Pt ) , and gold ( Au ) electrodes, respectively. It was found that the catalytic activity of the electrodes in the acid ionic liquid electrolytes ranked in sequence as Pt 〉 Au 〉〉 GC. The optimal concentration of [ HMIm] HSO4 in aqueous solutions was 30%( V/V ) , and the catalytic current density on Pt electrode for hydrogen evolution reaction ( HER ) at-0. 5 V (Ag QRE) reached 110. 52 mA/cm^2. This was 15 and 650-fold larger than the current on the Au and GC electrode, respectively. The Arrhenius activation energy of the Pt electrode in the electrolyte solution was 5. 68 kJ/mol. The high catalytic activity of the electrode was attributed to the [ HMIm] HSO4 that would release protons enabling H2 O molecules ionization, and facilitating the capture of electrons from the electrode.
作者 陈佳志 孟玲祎 王雅静 孟晋磊 江峰 楚哲 刘洪涛 CHEN Jia-Zhi MENG Ling-Yi WANG Ya-Jing MENG Jin-Lei JIANG Feng CHU Zhe LIU Hong-Tao(College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, China)
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2016年第12期1907-1911,共5页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(No.21071153) 湖南省科技计划(No.2014FJ2007)资助项目~~
关键词 电解水 制氢 酸性离子液体 催化活性 活化能 Water electrolysis Production of hydrogen Acid ionic liquid Catalytic activity Activation energy
  • 相关文献

参考文献1

二级参考文献83

  • 1Turner J A. Science, 1999, 285(5428): 687-689.
  • 2Zou X X, Zhang Y. Chem. Soc. Rev., 2015, 44(15): 5148-5180.
  • 3Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. J. Am. Chem. Soc., 2011, 133(19): 7296-7299.
  • 4Wang M Y, Wang Z, Gong X Z, Guo Z C. Renew. Sust. Energ. Rev., 2014, 29: 573-588.
  • 5Ran J, Zhang J, Yu J, Jaroniec M, Qiao S Z. Chem. Soc. Rev., 2014, 43(22): 7787-7812.
  • 6Trancik J E. Nature, 2014, 507(7492): 300-302.
  • 7Pincella F, Isozaki K, Miki K. Light Sci. Appl., 2014, 3(1): e133.
  • 8Marshall A, B?rresen B, Hagen G, Tsypkin M, Tunold R. Energy, 2007, 32(4): 431-436.
  • 9Thoi V S, Sun Y, Long J R, Chang C J. Chem. Soc. Rev., 2013, 42(6): 2388-2400.
  • 10Artero V, Chavarot-Kerlidou M, Fontecave M. Angew. Chem. Int. Ed., 2011, 50(32): 7238-7266.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部