期刊文献+

超声热效应下海藻酸钠微球力学特性模型分析

Numerical model of shear module of alginate micro-beads under ultrasonic thermal effect
原文传递
导出
摘要 目的对超声刺激产生的热效应下海藻酸钠微球机械特性变化进行模型分析。方法采用压缩实验,对微球压缩率、压应力进行记录,通过赫兹模型测量其剪切模量。在不同的超声刺激条件下,如改变超声刺激时间、超声刺激强度和超声刺激脉冲比率,检测超声刺激后微球水溶液温度和微球剪切模量的变化。对微球在不同温度下,剪切模量的变化进行模型化分析。通过实验再次验证模型对于预测微球剪切模量的高度可行性。结果超声刺激引起被刺激水溶液温度升高以及海藻酸钠微球剪切模量的升高;通过模型分析,获得海藻酸钠微球剪切模量和超声刺激后与水溶液温度相关性,以及二者的关系函数。结论海藻酸钠微球剪切模量和水溶液温度的关系函数可作为不同温度下微球剪切模量的预测模型,为海藻酸钠微球在具有温度变化环境中的应用提供良好的基础研究支持。 Objective To establish a numerical model of the shear module of alginate beads stimulated by ultrasonic sound. Methods The compression ratio and force of alginate beads were recorded with the compression test. The shear module of beads was measured with a Hertz model. When to alginate beads were stimulated ultrasonically for different durations, the ultrasonic stimulation power, ultrasonic pulse ratio, and changes in the shear module and solution temperature were measured. Results Temperatures in the solution and shear module of alginate beads increased under different ultrasonic stimulation conditions. Modeling analysis revealed the relationship between the shear module of alginate beads and the corresponding temperature. The shear module of beads was in a quadratic equation with temperature(20℃ 〈 T 〈 80℃ ). Residual analysis showed that the function had a good predictive and descriptive effect. Conculsion This function can be used as a good predictive model of the shear module of alginate beads at different temperatures. The results can facilitate the application of alginate beads to medical and biological research.
作者 赫培远 张建营 汲振余 张响 何美霞 徐洪亮 曹魏 邹敏 张丽果 HE Pei-yuan ZHANG Jian-ying JI Zhen-yu ZHANG Xiang HE Mei-xia XU Hong-liang CAO Wei ZOU Min ZHANG Li-guo(School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China Henan Academy of Medical and Pharma- ceutical Sciences, Zhengzhou 450052, China School of Mechanics & Engineering Science, Zhengzhou University, Zhengzhou 450001, China National Center for International Joint Research of Miero-Nano Molding Technology, Zheng- zhou University, Zhengzhou 450001, China Department of Neurology, the First Affiliated Hospital, Zhengzhou Univer- sity, Zhengzhou 450052, China Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China)
出处 《军事医学》 CAS CSCD 北大核心 2016年第12期937-940,共4页 Military Medical Sciences
基金 国家自然科学基金青年基金资助项目(31600676) 国家国际科技合作专项资助项目(2015DFA30550) 河南省教育厅重点攻关资助项目(17A180036 17A180037) 河南医学科技攻关资助项目(201403006)
关键词 超声热效应 模型 海藻酸钠 剪切模量 ultrasonic thermal effect modeling sodium alginate shear module
  • 相关文献

参考文献1

二级参考文献111

  • 1Abang, S., Chan, E. S., & Poncelet, D. (2012). Effects of process variables on the encap- sulation of oil in Ca-alginate capsules using an inverse gelation technique.Journal of Microencapsulation, 29(5), 417-428.
  • 2Amici, E., Tetradis-Meris, G., de Torres, C. P., & Jousse, F. (2008). Alginate gelation in microfluidic channels. Foocl Hyclrocolloids, 22(1), 97-104.
  • 3Annesini, M. C., Castelli, G., Conti, F., De Virgiliis, L. C., Marrelli, L., Miccheli, A., et al. (2000). Transport and consumption rate of 02 in alginate gel beads entrapping hepatocytes. Biotechnology Letters, 22(10), 865-870.
  • 4Barba, A. A., d'Amore, M., Cascone, S., Lamberti, G., & Titomanlio, G. (2009). Inten- sification of biopolymeric microparticles production by ultrasonic assisted atomization. Chemical Engineering and Processing: Process Intensification, 48(10), 1477-1483.
  • 5Bezbaruah, A. N., Shanbhogue, S. S., Simsek, S., & Khan, E. (2011). Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation. Journal of Nanoparticle Research, 13(12), 6673-6681.
  • 6Bhowmik, B. B., Sa, B., & Mukherjee, A. (2006). Preparation and in-vitro characteriza- tion of slow release testosterone nanocapsules in alginates. Acta Pharmaceutica (Zagreb Croatia), 56(4), 417-429.
  • 7Blandino, A., Macias, M., & Cantero, D. (2001). Immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochemistry, 36(7), 601-606.
  • 8Brandeoberger, H., N/Jssli, D., Piech, V., & Widmer, F. (1999). Monodisperse particle production: A method to prevent drop coalescence using electrostatic forces. Journal of Electrostatics, 45(3), 227-238.
  • 9Bugarski, B., Li, Q., Goosen, M. F., Poncelet, D., Neufeld, R.J., & Vunjak, G. (1994). Elec- trostatic droplet generation: Mechanism of polymer droplet formation. AIChE Journal, 40(6), 1026-1031.
  • 10Capretto, L., Mazzitelli, S., Balestra, C., Tosi, A., & Nastruzzi, C. (2008). Effect of the gelation process on the production of alginate microbeads by microfluidic chip technology. Lab on a Chip, 8(4), 617-621.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部