期刊文献+

基于双层索引结构的起源图查询方法 被引量:3

Provenance graph query method based on double layer index structure
下载PDF
导出
摘要 为解决现有的起源图查询效率低和资源占用率高的问题,考虑起源信息和数据本身之间的关联关系以及起源信息内部结构特点,提出了一种基于双层索引结构的起源图查询方法。首先,面向起源图查询,提出了一种包括基于词典表全局索引和基于位图局部索引的双层索引结构,全局索引用于查询起源图所存储的服务器节点,局部索引用于对全局索引查询到的服务器节点细化查询;然后,基于双层索引结构,设计了一种起源图查询方法,针对6种选择索引和3种join链接索引实现了查询算法。实验结果表明,所提方法既提高了查询效率,又降低了内存资源的浪费。 To solve the problem of low query efficiency and high resource occupancy of the existing provenance graph query system, and consider the internal structure characteristics of provenance information, the relationship between the provenance of information and the data itself, a provenance graph query method based on double layer index structure was proposed. Firstly, for provenance graph query, a double layer index structure including global index based on dictionary table and local index based on bitmap was established. Global index was used to query the server nodes stored in provenance graph, and local index was for refining the query inside one server node. Secondly, based on the dual index structure, a provenance graph query method was designed, in view of the six kinds of selection index and three kinds of join link index. The experimental results show that the proposed method not only improves the query efficiency, but also reduces the waste of memory resources.
出处 《计算机应用》 CSCD 北大核心 2017年第1期48-53,共6页 journal of Computer Applications
基金 国家863计划项目(2013BAB06B04) 中国华能集团公司总部科技项目(HNKJ13-H17-04) 江苏省自然科学基金资助项目(BK20130852) 水利部公益性行业科研专项经费项目(201501007)~~
关键词 起源图 双层索引结构 词典表 位图 provenance graph double layer index structure dictionary table bitmap
  • 相关文献

参考文献4

二级参考文献53

  • 1Robert Devine.Design and Implementation of DDH:A Distributed Dynamic Hashing Algorithm[C].Proceedings of 4th International Con- ference on Foundations of Data Organizations and Algorithms,1993.
  • 2http://blog.sina.com.cn/s/blog_56fc158ab0100oe5c.html.
  • 3Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the SOSP 2003. 2003.20-43. [doi: 10.1145/1165389. 945450].
  • 4Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the OSDI 2004. 2004. 137-150. [doi: 10.1145/1327452.1327492].
  • 5Yang HC, Dasdan A, Hsiao RL, Parker DS. Map-Reduce-Merge: Simplified relational data processing on large cluster. In: Proc. of the SIGMOD 2007. 2007. 1029-1040. [doi: 10.1145/1247480.1247602].
  • 6Lammel R. Google's MapReduce programming model Revisited. Science Computer Program, 2008,70(1):1-30. [doi: 10.1016/ j .scico .2007.07.001 ].
  • 7Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P, Murthy R. Hi:ce: A warehousing solution over a map-reduce framework. Proc. of the VLDB Endowment, 2009,2(2): 1626-1627.
  • 8Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Zhang N, Antony S, Liu H, Murthy R. Hive--A petabyte scale data warehouse using Hadoop data engineering. In: Proc. of the ICDE. 2010. 996-1005. [doi: 10.1109/ICDE.2010.5447738].
  • 9Olston C, Reed B, Sirvastava U, Kumar R, Tomkins A. Pig Latin: A not-so-foreign language for data processing. In: Proc. of the SIGMOD. 2008. 1099-1110. [doi: 10.1145/1376616.1376726].
  • 10White T. Hadoop: The Definitive Guide. O'Reilly, 2009.

共引文献92

同被引文献26

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部