期刊文献+

基于导向图优化的单幅图像深度去雾算法 被引量:4

Single image in-depth dehazing algorithm based on optimization of guided image
下载PDF
导出
摘要 针对雾霾等天气条件下获取的图像出现对比度下降、颜色失真等降质现象,提出一种基于导向图优化的单幅图像深度去雾算法。该算法在对大气散耗函数特性进行分析的基础上,引入图像局部均值和标准差优化导向图;再进一步对导向图进行分区域滤波,得到平滑且边缘清晰的导向图;然后采用快速引导滤波估计大气散耗图;最后根据大气散射物理模型恢复清晰图像。实验结果表明,恢复的图像清晰自然,细节丰富,近景去雾彻底,远景去雾有很大提升,在景深突变处的边缘取得较好的效果,提高了户外视觉系统的视见度和鲁棒性。 Aiming at the quality loss problems such as degradation in contrast and color distortion of image captured in haze and fog weather conditions, a single image in-depth dehazing algorithm based on optimization of the guided image was proposed. The local mean and standard deviation of the image were adopted to optimize the guided image on the basis of analysing the character of atmospheric veil. Then, the guided image was further filtered by using the dual zone filtering to get smooth and sharp-edged guided image. The atmospheric veil was estimated through the fast guided filtering. At last, a clear image would be recovered based on the atmospheric scattering physical model. The experimental results show that the recovered image is clear and natural, and rich in details. Its close view is dehazed completely, while the dehazing of its distant view is improved greatly. The proposed algorithm achieves good results where the depth of the field has a sudden saltation and improved the visibility and robustness of outdoor vision system.
出处 《计算机应用》 CSCD 北大核心 2017年第1期268-272,277,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61561030) 甘肃省财政厅基本科研业务费资助项目(214138) 兰州交通大学教改项目(160012)~~
关键词 深度去雾 暗通道先验 双区域滤波 引导滤波 导向图 in-depth dahazing dark channel prior dual zone filtering guided filtering guided image
  • 相关文献

参考文献5

二级参考文献51

  • 1Tan R T. Visibility in bad weather from a single image [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattem Recognition. New York, USA: IEEE,2008 : 1- 8.
  • 2Fattal R Single image dehazing [ C ]// Proceedings of ACM SIGGRAPH 2008. New York, USA : ACM,2008 : 1-9.
  • 3KaimingH, Jian S, Xiaoou T. Single image haze removal using dark channel prior [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE ,2009 : 1956-1963.
  • 4Jean- Philippe T, Nicolas H. Fast visibility restoration from a single color or gray level image [ C ]//Proceeding of IEEE 12th International Conference on Computer Vision. New York, USA: IEEE,2009:2201-2208.
  • 5姚波,黄磊,刘昌平.去雾增强图像质量客观比较方法的研究[C]//全国模式识别学术会议.纽约:IEEE,2009:1-5.
  • 6Sheikh H R, Bovik A C, Cormack L Noreference quality assessment using natural scene statistics :_JPEG2000 [ J ]. IEEE Transactions on image Processing ,2005,14 ( 11 ) : 1918-1927.
  • 7Zhou W, Bovik A C, Sheikh H R, et al. Image quality assessment : from error visibility to structural similarity[ J]. IEEE Transactions on Image Processing,200g, 13 (4) :600-612.
  • 8Carnec M,Le Callet P, Barba D. Objective quality assessment of color images based on a generic perceptual reduced reference [ J]. Image Communication,2008,23 (4) :239-256.
  • 9Chambah M, Rizzi A, Gatta C, et al. Perceptual approach for unsupervised digital color restoration of cinematographic archives [C]//Proceedings of SPIE Conference on Color Imaging VIII: Processing, Hardcopy, and Applications. Washington, USA : SPIE, 2003.5008 :138-149.
  • 10Jean-Philippe T. Single Image Visibility Restoration Comparison [ EB/OL]. [ 2010- 08- 07 ] . http://perso, lcpc. fr/tarel, jeanphilippe/visibility/.

共引文献258

同被引文献26

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部