期刊文献+

Weak thruster fault detection for AUV based on stochastic resonance and wavelet reconstruction 被引量:4

Weak thruster fault detection for AUV based on stochastic resonance and wavelet reconstruction
下载PDF
导出
摘要 When the bi-stable stochastic resonance method was applied to enhance weak thruster fault for autonomous underwater vehicle(AUV), the enhancement performance could not satisfy the detection requirement of weak thruster fault. As for this problem, a fault feature enhancement method based on mono-stable stochastic resonance was proposed. In the method, in order to improve the enhancement performance of weak thruster fault feature, the conventional bi-stable potential function was changed to mono-stable potential function which was more suitable for aperiodic signals. Furthermore, when particle swarm optimization was adopted to adjust the parameters of mono-stable stochastic resonance system, the global convergent time would be long. An improved particle swarm optimization method was developed by changing the linear inertial weighted function as nonlinear function with cosine function, so as to reduce the global convergent time. In addition, when the conventional wavelet reconstruction method was adopted to detect the weak thruster fault, undetected fault or false alarm may occur. In order to successfully detect the weak thruster fault, a weak thruster detection method was proposed based on the integration of stochastic resonance and wavelet reconstruction. In the method, the optimal reconstruction scale was determined by comparing wavelet entropies corresponding to each decomposition scale. Finally, pool-experiments were performed on AUV with thruster fault. The effectiveness of the proposed mono-stable stochastic resonance method in enhancing fault feature and reducing the global convergent time was demonstrated in comparison with particle swarm optimization based bi-stochastic resonance method. Furthermore, the effectiveness of the proposed fault detection method was illustrated in comparison with the conventional wavelet reconstruction. When the bi-stable stochastic resonance method was applied to enhance weak thruster fault for autonomous underwater vehicle(AUV), the enhancement performance could not satisfy the detection requirement of weak thruster fault. As for this problem, a fault feature enhancement method based on mono-stable stochastic resonance was proposed. In the method, in order to improve the enhancement performance of weak thruster fault feature, the conventional bi-stable potential function was changed to mono-stable potential function which was more suitable for aperiodic signals. Furthermore, when particle swarm optimization was adopted to adjust the parameters of mono-stable stochastic resonance system, the global convergent time would be long. An improved particle swarm optimization method was developed by changing the linear inertial weighted function as nonlinear function with cosine function, so as to reduce the global convergent time. In addition, when the conventional wavelet reconstruction method was adopted to detect the weak thruster fault, undetected fault or false alarm may occur. In order to successfully detect the weak thruster fault, a weak thruster detection method was proposed based on the integration of stochastic resonance and wavelet reconstruction. In the method, the optimal reconstruction scale was determined by comparing wavelet entropies corresponding to each decomposition scale. Finally, pool-experiments were performed on AUV with thruster fault. The effectiveness of the proposed mono-stable stochastic resonance method in enhancing fault feature and reducing the global convergent time was demonstrated in comparison with particle swarm optimization based bi-stochastic resonance method. Furthermore, the effectiveness of the proposed fault detection method was illustrated in comparison with the conventional wavelet reconstruction.
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2883-2895,共13页 中南大学学报(英文版)
基金 Project(51279040)supported by the National Natural Science Foundation of China
关键词 autonomous underwater vehicle(AUV) THRUSTER weak fault particle swarm optimization(PSO) mono-stable stochastic resonance wavelet reconstruction autonomous underwater vehicle(AUV) thruster weak fault particle swarm optimization(PSO) mono-stable stochastic resonance wavelet reconstruction
  • 相关文献

参考文献13

二级参考文献244

共引文献535

同被引文献97

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部