期刊文献+

复杂网络节点相似性算法及其在癫痫病辅助诊断的应用 被引量:3

Node Similarity Algorithm on Complex Network and Its Application in Epilepsy Auxiary Diagnosis
下载PDF
导出
摘要 节点相似性分析是链路预测和社团挖掘中的重要部分.引入CN(Common Neighbor,共同邻居)算法、RA(Resource Allocation,资源分配)算法、AA(Adamic-Adar)算法、Sorenson算法等四种节点相似性算法作用于真实网络以及仿真网络(即小世界网络和无标度网络)网络,计算AUC(Area Under the Curve,曲线下面积)曲线从而比较算法的预测准确性,结果表明RA算法的预测准确性优于其他三种算法.随后将四种算法用于分析8例全身性癫痫患者脑电数据功能连接网络,结果发现RA算法预测准确性最佳,通过RA算法能确定最大节点相似度组成的节点簇,为量化大脑功能状态提供客观指标,未来可以将该方法用于临床辅助诊断. The investigation of node similarity is an important component in link prediction and community detection. In this paper, four kinds of algorithms including common neighbor(CN), resource allocation(RA), Adamic-Adar(AA) and Sorenson are introduced into various kinds of real networks and two kinds of simulation networks comprised of small world network and scale free network. The Area Under the Curve(AUC) is computed to compare their predictive accuracy. It's found that RA performs much better than the other three kinds of algorithms. Then four algorithms are adopted in functional connectivity networks that characterize electroencephalograph(EEG) recordings from eight patients with generalized epilepsy. It's demonstrated that RA performs best from the point of prediction accuracy. According to RA technique, clusters could be determined from nodes that own maximum similarity which provides an objective index for quantifying brain condition, and this might be applied for clinical auxiliary diagnosis in the future.
出处 《计算机系统应用》 2017年第1期9-15,共7页 Computer Systems & Applications
基金 国家自然科学基金(81460206) 贵州医科大学博士启动基金(J2014[003])
关键词 复杂网络 节点相似性 链路预测 癫痫 complex network node similarity link prediction epilepsy
  • 相关文献

参考文献3

二级参考文献186

  • 1GETOOR L,DIEHL C P.Link mining:a survey[J].ACM SIGKDD Explorations Newsletter,2005,7(2):3-12.
  • 2SARUKKAI R R.Link prediction and path analysis using markov chains[J].Computer Networks,2000,33(1-6):377-386.
  • 3ZHU J,HONG J,HUGHES J G Using markov chains for link prediction in adaptive web sites[J].Lect Notes Comput Sci,2002,2311:60-73.
  • 4POPESCUL A,UNGAR L.Statistical relational learning for link prediction[C] //Proceedings of the Workshop on Learning Statistical Models from Relational Data.New York:ACM Press,2003:81-87.
  • 5O'MADADHAIN J,HUTCHINS J,SMYTH P.Prediction and ranking algorithms for event-based network data[C] //Proceedings of the ACM SIGKDD 2005.New York:ACM Press,2005:23-30.
  • 6LIN D.An information-theoretic definition of similarity[C] //Proceedings of the 15th Intl Conf Mach.Learn..San Francisco,Morgan Kaufman Publishers,1998:296-304.
  • 7LIBEN-NOWELL D,KLEINBERG J.The link-prediction problem for social networks[J].J Am Soc Inform Sci Technol,2007,58(7):1019-1031.
  • 8CLAUSET A,MOORE C,NEWMAN M E J.Hierarchical structure and the prediction of missing links in networks[J].Nature,2008,453:98-101.
  • 9HOLLAND P W,LASKEY K B,LEINHARD S.Stochastic blockmodels:First steps[J].Social Networks,1983,5:109-137.
  • 10GUIMERA R,SALES-PARDO M.Missing and spurious interactions and the reconstruction of complex networks[J].Proc Natl Sci Acad USA,2009,106(52):22073-22078.

共引文献283

同被引文献14

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部