期刊文献+

拉伸变形对Hastelloy C-276合金组织与力学性能的影响 被引量:5

Effects of Tensile Deformation on Microstructure and Mechanical Properties of Hastelloy C-276 Alloy
原文传递
导出
摘要 采用金相(OM)、电子背散射衍射(EBSD)以及拉伸实验等技术手段研究了不同变形量条件下Hastelloy C-276合金薄板的组织演化特征和力学性能。结果表明:变形量小于14%时,位错优先在晶界附近塞积,并产生局部应变集中;变形量在14%~30%范围内,孪晶界附近及晶粒内部产生大量位错,位错滑移引起晶粒内部应变集中增强;变形量由0%增加至30%,晶界应变集中程度因子先增大后减小,变形量为14%时晶界应变集中程度因子最大。利用Ludwigson模型回归拟合了不同变形条件下的真应力-真应变曲线,随变形量的增加,材料的加工硬化程度提高,加工硬化速率减小,发生单滑移向多滑移转变的临界应变减小。 The microstructural evolution and mechanical properties of Hastelloy C-276 alloy sheet with different deformations were investigated using the optical microscope(OM), electron back-scattered diffraction(EBSD), and tensile test. The results show that dislocation pile-ups and local strain concentration preferentially appear at grain boundaries under the deformation less than 14%. When the deformation is in the range of 14%~30%, a great quantity of dislocation is produced which locate at twin boundaries and within grains, and the dislocation slip leads to high strain concentration within grains. When deformation degree increases from 0% to 30%, the strain concentration degree of grain boundaries increases at first and then decreases, and reaches the maximum at 14%. The Ludwigson model can describe the true stress-true strain curves by the regression fitting. With the deformation degree increasing, the degree of work-hardening improves while the work-hardening rate decreases, and the critical strain of single slip transforming to multiple slip decreases.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第12期3128-3134,共7页 Rare Metal Materials and Engineering
基金 国家自然科学基金(50834008)
关键词 HASTELLOY C-276合金 小角度晶界 应变集中 Ludwigson模型 Hastelloy C-276 alloy low angle boundary strain concentration Ludwigson model
  • 相关文献

参考文献1

二级参考文献18

  • 1郝玉琳,杨锐.纳米高强Ti-Nb-Zr-Sn合金[J].金属学报,2005,41(11):1183-1189. 被引量:21
  • 2邸玉贤,计欣华,李林安,秦玉文,陈金龙.纳米金属材料宏观弹性模量的数值模拟研究[J].机械强度,2007,29(1):16-19. 被引量:10
  • 3Kent D, Wang G, Yu Z T et al. J of Mechanical Behavior of Biomedical Mater[J], 2011, 4(3): 405.
  • 4Cui W F, Guo A H, Zhou L et al. Science China Technological Sciences[J], 2010, 53(6): 1513.
  • 5Kuramoto S, Furuta T, Hwang J et al. Mater Sci Eng A[J], 2006,442(1-2): 454.
  • 6Min X H, Emur S, Sekido N et al. Mater Sci Eng A[J], 2010, 527(10-11): 2693.
  • 7Li T, Morris J W, Nagasako N et al. Phys Rev Lett[J] 2007, 98(10): 105.
  • 8Besse M, Castany P. Acta Mater[J], 2011, 59(15): 5982.
  • 9Wang Y B, Zhao Y H, Lian Q et al. Scrip Mater[J], 2010, 63(6): 613.
  • 10Guo Q, Wang Q, Sun D L et al. Mater Sci Eng A[J], 2010, 527(16-17): 4229.

共引文献4

同被引文献53

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部