期刊文献+

TiAl合金表面EB-PVD制备热障涂层及高温抗氧化性能 被引量:3

Preparation and High Temperature Oxidation Resistance of Thermal Barrier Coatings on Ti-Al Alloys by EB-PVD
原文传递
导出
摘要 利用EB-PVD技术在Ti Al合金表面制备了扩散铝/YSZ热障涂层。采用SEM、EDS和XRD分析了涂层原始及高温氧化后的微观组织及相组成,并测试了高温氧化性能。结果表明:涂层表面YSZ层为致密柱状晶结构,由非平衡四方相t′-ZrO_2组成。Ti Al合金沉积了扩散铝/YSZ热障涂层后高温氧化性能显著提高,氧化动力学曲线呈对数变化规律,900℃高温氧化时,氧化速率为2.2×10^(-5) mg/cm^2·h。1000℃高温氧化时,氧化速率为1.14×10^(-3) mg/cm^2·h。在高温氧化过程中,粘结层与基体之间发生元素扩散,膜基界面消失。在面层与中间粘结层之间形成了均匀连续的热生长氧化物层TGO。 Al-diffusion/YSZ thermal barrier coatings(TBCs) were deposited on Ti-Al alloys by electronic beam-physical vapor deposition(EB-PVD). The microstructure and phase constituent of the TBCs before and after high temperature oxidation were analyzed by SEM, EDS and XRD. And the high temperature oxidation resistance of the TBCs was measured. The results show that the top YSZ TBC is composed of non-equilibrium tetragonal t′-ZrO2, which has a dense columnar microstructure. The high temperature oxidation resistance of TBCs is much higher than that of the substrate. The oxidation kinetics obeys the logarithmic law. The oxidation rates are 2.2×10^-5 mg/cm^2·h and 1.14×10^-3 mg/cm^2·h at 900 °C and 1000 °C, respectively. During the high temperature oxidation, the element diffusion occurs between the bond layer and the substrate and the interface vanishes. Thermal grown oxide(TGO) layers are formed between the surface layer and the bond layer.
机构地区 西北工业大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第12期3144-3148,共5页 Rare Metal Materials and Engineering
基金 陕西省自然科学基础研究计划重点项目资助(2014JZ012)
关键词 TIAL合金 EB-PVD 热障涂层 高温氧化 Ti-Al alloys EB-PVD thermal barrier coatings high temperature oxidation
  • 相关文献

参考文献1

二级参考文献16

  • 1Yamaguchi M, lnui H, Ito K. High-temperature structural intermetallics [J]. Acta Mater, 2000, 48(1): 307-322.
  • 2Wiedemann K E, Wallace T A. Oxidation of hicgh temperature intermetallics [M]. The Minerals and Materials Society, 1988: 195-198.
  • 3Becker S, Rahmel A, Schorr M, et al. Mechanism of isothermal oxidation of the intel-metallic TiAl and of TiAl alloys [J]. Oxidation of Metals, 1992, 38(5): 425-464.
  • 4Xiang Z D, Rose S R, Datta P K. Codeposition of Al and Si to form oxidation-resistant coatings on T-TiAl by the pack cementation process [J]. Materials Chemistry and Physics, 2003, 80: 482-489.
  • 5Chungen Z, Huibin X, Shengkai G, et al. A study of aluminide coatings on TiAl alloys by the pack cementation method [J]. Materials Science and Engineering A, 2003, 341 : 169-173.
  • 6Li X Y, Taniguchi S. Oxidation behavior of a γ-TiAl-based alloy implanted by silicon and/or carbon [J]. Materials Science and Engineering A, 2005, 398 (1-2): 268-274.
  • 7Mukherjee S, Maitz M F, Pham M T, et al. Development and biocompatibility of hard Ti-based coatings using plasma immersion ion implantation-assisted deposition [J]. Surface and Coatings Technology, 2005, 196(1-3): 312-316.
  • 8Li X Y, Taniguchi S, Zhu Y C, et al. Oxidation behavior of TiAl protected by Si+Nb combined ion implantation [J]. Intermetallics, 2001, 9(5): 443-449.
  • 9Gray S, Jacobs M H, Ponton C B, et al. A method of heat-treatment of near γ-TiAl to enhance oxidation resistance by the formation of a Ti5Si3 layer [J]. Materials Science and Engineering A, 2004, 384: 77-82.
  • 10Lee J K, Lee H N, Lee H K, et al. Effects of Al-21Ti-23Cr coatings on oxidation and mechanical properties of TiAl alloy [J]. Surface and Coatings Technology, 2002, 155: 59-66.

共引文献8

同被引文献50

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部