期刊文献+

弱连续交既约元及其性质

Weak Continuous Intersection Irreducible Elements and Their Properties
下载PDF
导出
摘要 作为交既约元的一种推广,引入弱连续交既约元的概念,并对其在完备格上的一些性质进行讨论,得到若干结果. In this paper, the definition of weak complete intersection irreducible elements is given as a promotion, and some of its natures are discussed and some theorems are gotten in the complete lattice.
作者 王逸芬 卢涛
出处 《佳木斯大学学报(自然科学版)》 CAS 2017年第1期138-139,共2页 Journal of Jiamusi University:Natural Science Edition
基金 国家自然科学基金项目(11171156) 安徽省高校自然科学研究重点项目(KJ2015A064)
关键词 完备格 连续交既约元 弱连续交既约元 complete lattice continuous intersection irreducible elements weak continuous intersection irreducible elements
  • 相关文献

参考文献3

二级参考文献13

  • 1Birkhoff G. Lattice Theory. 3th Ed., Vol.XXV, AMS Colloquium Publications, 1979.
  • 2Sanchez E. Resolution of composite fuzzy relation equations. Inform. and Control, 1976, 30: 38-48.
  • 3Szaz G. Introduction to Lattice Theory. 3rd Ed., New York: Academic Press, 1963.
  • 4Di Nola A, Sessa S, Pedrycz W and Sanchez E. Fuzzy Relation Equations and Their Applications to Knowledge Engineering. Dordrecht, Boston/London: Kluwer Academic Publishers, 1989.
  • 5Di Nola A, Sessa S, Pedrycz W, Higashi M. Minimal and maximal solutions of a decomposition problem of fuzzy relations. Int. J. General Systems, 1985, 11: 103-116.
  • 6Higashi M and George J K. Resolutions of finite fuzzy relation equations. Fuzzy Sets and Systems, 1984,13: 65-82.
  • 7Di Nola A. On solving relational equations in Brouwerian lattices. Fuzzy Sets and Systems, 1990, 34:365-376.
  • 8Wang Xueping. Method of solution to fuzzy relation equations in a complete Brouwerian lattice. Fuzzy Sets and Systems, to appear.
  • 9Birkhoff G. Lattice Theory. Revised Ed., Vol. XXV, AMS Colloquium Publications, 1984.
  • 10Crawley P and Dilworth R P. Algebraic Theory of Lattice. Englewood Cliffs, NJ: Prentice-Hall, 1973.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部