期刊文献+

基于层次分类的手机位置无关的动作识别 被引量:1

Hierarchical Classification-based Smartphone Displacement Free Activity Recognition
下载PDF
导出
摘要 使用智能手机中集成的加速度传感器识别用户日常动作在惯性定位、个性化推荐、运动量评估等领域有重要的应用。手机位置不固定导致的动作识别率低下是该领域面临的主要问题。为了提高手机位置不固定时的动作识别率,该文提出一种基于层次分类的动作识别方法。该方法将动作识别分为多层,每一层包含一个分类器。在训练某一层分类器时,首先根据本层训练样本集进行特征选择并训练分类器。然后使用训练得到的分类器对训练样本分类,并计算分类结果的可信度。最后通过对低可信度的样本进行剪枝得到下层分类器的训练样本。对未知类别的样本分类时,首先使用第1层分类器分类。如果分类结果可信度较高,则分类结束;否则使用下层分类器分类,直至所有分类器遍历完。实验部分通过对采集的动作数据进行仿真,验证了该文方法的有效性。结果表明,与单层分类器相比,该方法可以将动作识别率由85.2%提高至89.2%。 Human activity recognition based on accelerometer embedded in smartphones is wildly applied to inertial positioning, personalized recommendation, daily exercise estimating and other fields. The low recognition rate which caused by varying phone displacement is a crucial problem which needs to solve. To improve the recognition rate when the phone's displacement is unfixed, a hierarchical classification-based activity recognition method is proposed. The activity recognition process is divided into multiple layers in this method, and each layer contains a classifier. For training each layer's classifier, it runs the feature selection algorithm first, and the classifier is trained based on the selected features. Then, the trained classifier is used to classify the training set, and each sample's classification confidence is calculated. Finally, samples whose confidence is lower than the hierarchical threshold are selected as the next layer's training set. This process continues until each activity's sample number is less than the predefined pruning threshold. When an unlabeled sample comes, the first layer is used to classify this sample. If the classification confidence is higher than the hierarchical threshold, the recognition is over. Otherwise, the next layer will repeat this process until all the layers are traversed. The experiment collects activity data, and simulates the activity recognition. The simulation show that compared with the current methods, this method may improve the recognition rate from 85.2% to 89.2%.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第1期191-197,共7页 Journal of Electronics & Information Technology
基金 天津市重大科技专项(13ZCZDGX01098) 天津市自然科学基金(16JCQNJC00700)~~
关键词 动作识别 加速度传感器 层次分类 特征选择 Activity recognition Accelerometer Hierarchical classification Feature selection
  • 相关文献

参考文献3

二级参考文献47

  • 1宋锐,张静,夏胜平,郁文贤.一种基于BP神经网络群的自适应分类方法及其应用[J].电子学报,2001,29(z1):1950-1953. 被引量:19
  • 2邓赵红,王士同,吴锡生,胡德文.鲁棒的极大熵聚类算法RMEC及其例外点标识[J].中国工程科学,2004,6(9):38-45. 被引量:12
  • 3王熙照,安素芳.基于极大模糊熵原理的模糊产生式规则中的权重获取方法研究[J].计算机研究与发展,2006,43(4):673-678. 被引量:7
  • 4Kohavi R, Sommerfield D, Dougherty J. Wrapper for feature subset selection [J]. Artificial Intelligence, 1997, 97 (1/2/ 3): 273-324.
  • 5Lee C, Landgrebe D. A. Feature extraction based on decision boundaries[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1993, 15(4) : 388-400.
  • 6Peng Hanchuan, Long Fuhui, Ding Chris. Feature selection based on mutual information: Criteria of max-depenedency, max-relevance, and rain-redundancy [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (8) : 1226-1238.
  • 7Kira K, Rendell L A. A practical approach to feature selection [C]//Proc of the 9th Int Workshop on Machine Learning. San Francisco: Morgan Kaufmann, 1992:249-256.
  • 8Kononenko I. Estimating attributes: Analysis and extensions of RELIEF [C]//Proc of European Conf on Machine Learning. Berlin: Springer, 1994:171-182.
  • 9Robnik M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF [J]. Machine Learning, 2003, 53(1/2) : 23-69.
  • 10Sun Yijun. herative RELIEF for feature weighting: Algorithms, theories, and applications [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29 (6) : 1035-1051.

共引文献38

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部