期刊文献+

基于区域对比度增强的二值化算法 被引量:18

Binarization Method Based on Local Contrast Enhancement
下载PDF
导出
摘要 降质文档图像二值化问题是图像处理领域的一个难点。该文通过分析图像不同区域灰度对比度的差异,为降质文档图像提出了新的二值化算法。首先利用四叉树原理自适应划分区域,再对不同灰度对比度区域采用不同对比度增强法以调整局部区域内的灰度对比度,最后根据灰度值出现的频率确定局部阈值。该文测试了随机拍摄的降质图像及DIBCO(Document Image Binarization COntest)图像集中的50幅图像。与4种经典算法比较,所提算法处理的降质图像具有最高F-measure值和峰值信噪比(PSNR值)。 Binarization for degraded document images is a difficult point in image processing. This paper presents a new binarization method for the degraded document images by analyzing the differences of image grayscale contrast in different areas. Firstly, theory of quadtree is used to divide areas adaptively. Secondly, various contrast enhancements are selected to adjust local grayscale contrast for different contrast areas. Lastly, the frequency of gray value is utilized to calculate threshold. The proposed algorithm is tested on random shooting degraded images and datasets of Document Image Binarization COntest (DIBCO). Compared with other four classical algorithms, the binaried images using the proposed algorithm gain the highest F-measure and PSNR (Peak Signal-to-Noise Ratio).
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第1期240-244,共5页 Journal of Electronics & Information Technology
基金 哈尔滨市科技创新人才项目(2014RFQXJ163)~~
关键词 图像处理 二值化 区域对比度增强 局部阈值 四叉树法 Image processing Binarization Local contrast enhancement Local threshold Quadtree
  • 相关文献

参考文献2

二级参考文献28

  • 1范九伦,赵凤,张雪峰.三维Otsu阈值分割方法的递推算法[J].电子学报,2007,35(7):1398-1402. 被引量:69
  • 2Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation E J 1. Journal of Electronic Imaging,2004,13(1) : 146 - 168.
  • 3Otsu N. A threshold selection method from gray-level histograms[ J ]. IEEE Transactions on Systems, Man and Cybernetics, 1979,9( 1 ) : 62 - 66.
  • 4Chien-Hsing Chou, Wen-Hsiung Lin, Fu Chang. A binarization method with learning-build rules for document images produced by cameras[J]. Pattern Recognition, 2010,43(4) : 1518 - 1530.
  • 5Farrahi Moghaddam R, Cheriet M. A multi-scale framework for adaptive binarization of degraded document images[J]. Pattern Recognition, 2010,43(6) :2186- 2198.
  • 6Wen-zhu Yang, Dao-liang Li, Liang Zhu, et al. A new approach for image processing in foreign fiber detection [ J ]. Computers and Electronics in Agriculture, 2009,68( 1 ) : 68 - 77.
  • 7Chung Kuo-liang, Tsai Chia-lun.Fast incremental algorithm for speeding up the computation of binarization[ J]. Applied Mathematics and Computation, 2009,212(2) :396 - 408.
  • 8Deng-Yuan Huang, Chia-Hung Wang. Optimal multi-level thresholding using a two-stage Otsu optimization approach E J]. Pattern Recognition Letters, 2009,30(3) : 275 - 284.
  • 9Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38, Article No. 13, DOI: 10.1145/1177352.1177355.
  • 10Sezgin M, Sankur B. Survey over image thresholding tech- niques and quantitative performance evaluation. Journal of Electronic Imaging, 2004, 13(1): 146-168.

共引文献60

同被引文献129

引证文献18

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部