期刊文献+

基于逆幂法的组合稀疏约束主成分分析

Sparse Principal Component Analysis with Sparsity Constraints Based on the Inverse Power Method
下载PDF
导出
摘要 讨论了在标准主成分分析的基础上增加L0罚,L1罚和L2罚约束条件,使主成分变得更加稀疏,以便于解释实际问题,运用逆幂法给出了求解目标函数的迭代算法.数据模拟实验展示了此算法在主成分的稀疏程度和累积贡献率上都取得了很好的效果. In the report, based on the standard principal components analysis, in order to explain the practical problems, L0 penalty, L1 penalty, and L2 penalty constraint conditions were added, which made the principal components more sparse. The inverse power method was used to obtain the iterative algorithm for solving the objective function. The data simulation experiment results suggested that our algorithm has achieved good effects on the sparse degree and the cumulative contribution rate of the principal component.
作者 李霞 刘向阳
机构地区 河海大学理学院
出处 《海南大学学报(自然科学版)》 CAS 2016年第4期338-342,共5页 Natural Science Journal of Hainan University
基金 国家自然科学基金(61001139)
关键词 主成分分析 稀疏主成分分析 逆幂法 非线性特征提取 principal component analysis sparse principal component analysis the inverse power method non- linear feature extraction
  • 相关文献

参考文献5

二级参考文献96

  • 1I T Jolliffe. Principal Component Analysis,2nd ed[M].New York:springer-verlag,2002.
  • 2S Lee,F Zou,F A Wright. Convergence and prediction of principal component scores in high-dimensional settings[J].Annals of Statistics,2010,(06):3605-3629.
  • 3J Fan,R Li. Statistical challenges with high dimensionality:Feature selection in knowledge discovery[A].Zurich:European Mathematical Society,2006.595-622.
  • 4J Fan,J Lv. Sure independence screening for ultrahigh dimensional feature space[J].Journal of the Royal Statistical Society,Series B:Statistical Methodology,2008,(05):849-911.doi:10.1111/j.1467-9868.2008.00674.x.
  • 5T Hastie,R Tibshirani,J Friedman. The Elements of Statistical Learning Data Mining,Inference,and Prediction[M].New York:springer-verlag,2002.61-78.
  • 6D L Donoho,J Tanner. Precise undersampling theorems[J].Proceedings of the IEEE,2010,(06):913-924.
  • 7D L Donoho. Scanning the technology[J].Proceedings of the IEEE,2010,(06):910-912.
  • 8A M Bruckstein,D L Donoho,M Elad. From sparse solutions of systems of equations to sparse modeling of signals and images[J].SIAM Review,2009,(01):34-81.doi:10.1137/060657704.
  • 9J A Tropp. Just relax:Convex programming methods for identifying sparse signals in noise[J].IEEE Transactions on Information theory,2006,(03):1030-1051.
  • 10M Lustig,D Donoho,J M Pauly. Sparse MRI:The application of compressed sensing[J].Magnetic Resonance in Medicine,2007,(06):1182-1195.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部