期刊文献+

二氧化锰纳米片的高原子效率制备及其电容器性能 被引量:2

Highly atom-efficiency synthesis of MnO_2 nanosheets for supercapacitors
下载PDF
导出
摘要 Hummers法是较为常用的制备氧化石墨的一种方法,然而在此过程中会产生含有大量Mn2+的废液。对废液中Mn2+的浓度进行调控,然后加碱液沉淀,分别得到了四氧化三锰纳米颗粒和二氧化锰纳米片。将具有较大比表面的二氧化锰纳米片作为电极材料,测试了其电化学性能。结果显示,当电流密度为0.1 A/g时,二氧化锰纳米片比容量可达315.0 F/g。在1 A/g下循环1 000次,其比容量保持率为93.3%。此种方法不仅大大降低了废液排放的危害,而且高原子效率制备了高性能的超级电容器电极材料。 A large amount of wastewater containing a large amount of Mn ion is produced by Hummer' s method, which is one of most frequently used methods to prepare graphite oxide.Mn304 nanoparticles and MnO2 nanosheets were synthesized respectively by a facile treatment of the wastewater containing Mn2+ by KOH solution.The electrochemical performance of MnO2 nanosheets as the electrode materials was tested.Results showed that the specific capacitance of MnO2 nanosheets electrode could reach 315.0 F/g at 0.1 A/g.And the specific capacitance retention at a current density of 1 A/g for MnO2 nanosheets could retain 93.3% of the initial capacitance after 1 000 cycles.Obviously, a highly atom-efficiency strategy was showed for preparation of supercapacitor electrode materials with high performance by a facile treatment of the wastewater and the harm of waste liquid discharge was greatly reduced at the same time.
出处 《无机盐工业》 CAS 北大核心 2017年第1期70-73,共4页 Inorganic Chemicals Industry
基金 国家自然科学基金项目(21176054)
关键词 MnO2纳米片 高原子效率 超级电容器 MnO2 nanosheets atom-efficiency supercapacitors
  • 相关文献

参考文献1

二级参考文献21

  • 1Ganley J C.Design and testing of a series hybrid vehicle with an ultracapacitor energy buffer[J].P.I.Mech.Eng.D-J.Aut.,2012,226(7):869-880.
  • 2Kim Y J,Yang C M,Park K C,et al.Edge-enriched,porous carbonbased,high energy density supercapacitors for hybrid electric vehicles[J].Chem.Sus.Chem.,2012,5 (3):535-541.
  • 3Yu Z H,Zinger D,Bose A.An innovative optimal power allocation strategy for fuel cell,battery and supercapacitor hybrid electric vehicle[J]J.Power Sources,2011,196 (4):2351-2359.
  • 4Camara M B,Gualous H,Gustin F,et al.DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications-polynomial control strategy[J].IEEE.T.Ind.Electron.,2010,57 (2):587-597.
  • 5Encarnación Raymundo-Pi(n)ero,Martin Cadek,Fran(c)ois Bégnin.Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds[J].Adv.Funct.Mater.,2009,19 (7):1032-1039.
  • 6Antonino Salvatore Aricò,Peter Bruce,Bruno Scrosati,et al.Nanostructured materials for advanced energy conversion and storage devices[J].Nat.Mater.,2005,4 (5):366-377.
  • 7Chmida J,Yushin G,Gogotsi Y,et al.Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J].Science,2006,313 (5794):1760-1763.
  • 8Conway B E.Electrochemical supercapacitors[M].New York:Kluwer Academic/Plenum,1999.
  • 9Zheng H J,Wang J X,Jia Y,et al.In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors[J].J.Power Sources,2012,216:508-514.
  • 10Mathieu Toupin,Thierry Brousse,Daniel Bélanger.Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J].Chem.Mater.,2004,16 (16):3184-3190.

共引文献6

同被引文献18

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部