期刊文献+

求解PFSP的双种群协同学习算法 被引量:5

Double population co-learning algorithm for permutation flow-shop scheduling problems
原文传递
导出
摘要 在人工蜜蜂群算法的基础上,提出一种双种群协同学习算法.该算法根据个体适应度高低把蜜蜂群划分为两个子群,并重新定义子群的学习交流机制.在10个常用的基准测试函数上与其他4个常用的群体智能算法进行比较,比较结果表明,所提出算法的性能有明显改进.采用双种群协同学习算法求解置换流水车间调度问题,在一些著名的中大规模测试问题包括21个Reeves实例和40个Taillard实例上进行测试,结果表明,所提出的算法优于其他算法,能有效解决置换流水车间调度问题. Based on the artificial bee colony(ABC) algorithm, a double population co-learning(DPCL) algorithm is proposed. A population is divided into two populations according to their fitness. The individuals of each population are updated according to the given learning rules. With a test on ten benchmark functions, the proposed DPCL algorithm is proved to have significant improvement over canonical ABC and several other comparison algorithms. The DPCL algorithm is then employed for permutation flow-shop scheduling problem(PFSP). Twenty-one Reeves instances and forty Taillard instances are used. The results show that the DPCL algorithm can obtain better results than other algorithms, and is a competitive approach for PFSP.
出处 《控制与决策》 EI CSCD 北大核心 2017年第1期12-20,共9页 Control and Decision
基金 国家杰出青年科学基金项目(61174164 51205389) 辽宁省自然科学基金项目(2015020163)
关键词 协同学习 置换流水车间调度 智能算法 co-learning permutation flow-shop scheduling intelligent algorithm
  • 相关文献

参考文献2

二级参考文献22

  • 1王磊,黄文奇.求解工件车间调度问题的一种新的邻域搜索算法[J].计算机学报,2005,28(5):809-816. 被引量:20
  • 2潘全科,朱剑英.一类解决Job Shop问题的禁忌搜索算法[J].中国机械工程,2006,17(5):536-539. 被引量:16
  • 3潘全科,王文宏,朱剑英,赵保华.基于粒子群优化和变邻域搜索的混合调度算法[J].计算机集成制造系统,2007,13(2):323-328. 被引量:43
  • 4GAREY E L, JOHNSON D S, SETHI R. The complexity of flow-shop and Job Shop scheduling[J]. Mathematics of Operations Research,1976,1(1):117-129.
  • 5KENNEDY J, EBERHART R C. Particle swarm optimization [C]//Proceedings of International Conference on Neural Networks. Piscataway, N.J. ,USA:IEEE Press,1995:1942-1948.
  • 6KENNEDY J,EBERHART R C. A discrete binary version of the particle swarm algorithm[C]//Proceedings of 1997 Conference on Systems, Man, and Cybernetics. Washington, D. C. , USA:IEEE, 1997,5:4104-4108.
  • 7LIAO C J, TSENG C T, LUARN P. A discrete version of particle swarm optimization for flowshop scheduling problems[J]. Computers & Operations Research, 2007,34 (10) : 3099-3111.
  • 8TASGETREN M F, SEVKLI M, LIANG Y C, et al. Particle swarm optimization algorithm for single machine total weighted tardiness problem[C]//Proceedings of IEEE Congress on Evolutionary Computation. Washington, D. C. , USA: IEEE, 2004,2 : 1412-1419.
  • 9TASGETREN M F swarm optimization SEVKLI M, LIANG Y C, et al. Particle algorithm for permutation flowshop sequencing problem [J]. Lecture Notes in Computer Science, 2004,3172:382-389.
  • 10LIU Bo, WANG Ling, JIN Yihui. An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers[J]. Computers & Operations Research,2008,35(9) :2791-2806.

共引文献16

同被引文献48

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部