期刊文献+

基于异构平台的并行最大最小蚁群算法 被引量:4

Parallel Max-min Ant System Based on Heterogeneous Platform
下载PDF
导出
摘要 最大最小蚂蚁系统(Max-min Ant System,MMAS)是一种性能优良的启发式算法,常用于解决组合优化问题.当解决的目标问题规模较大、迭代轮次较多时,最大最小蚁群算法存在运行时间长的缺点.试验以开源串行包ACOTSP为基准,利用GPU多线程并发的优势,采用并行蚂蚁策略将MMAS在CPU-GPU协同异构计算平台上并发实现.算法在GPU上运行时的影响因素,如数据传输、内存层次、库函数调用等,也得到有效分析,并作出针对性优化.试验最终取得了高达13倍的加速,表明并行MMAS策略具有高效性和实用性. Max-min Ant System is a kind of heuristic algorithm with excellent performance, which is commonly used to solve combinatorial optimization problems. But it costs a long time when scale of the target problem is large as well as iterations are a lot. The experiment took the open source packet ACOTSP as a reference, used the advantage of multi- threaded GPU, and implemented ACO algorithm on CPU-GPU platform by parallel ants strategy. While the parallel algorithm is running on GPU, we also analyzed the impact factors carefully, such as data transmission, memory hierarchy, library calls et al, and made useful optimization. Eventually, the experiment made 13 times speedup, proving the parallel strategy is highly efficient and applicable.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第12期1949-1955,共7页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(61272268) 上海市青年科技启明星计划(15QA1403900) 霍英东教育基金会高等院校青年教师基金(142002) 教育部新世纪优秀人才支持计划(NCET-12-0413) 同济大学中央高校基本科研业务费专项资金
关键词 并行计算 异构平台 最大最小蚁群系统 加速比 parallel computing heterogeneous platform Max-min Ant System speedup ratio
  • 相关文献

参考文献6

二级参考文献88

  • 1李曼,王大治,杜小勇,王珊.基于领域本体的Web服务动态组合[J].计算机学报,2005,28(4):644-650. 被引量:141
  • 2张成文,苏森,陈俊亮.基于遗传算法的QoS感知的Web服务选择[J].计算机学报,2006,29(7):1029-1037. 被引量:103
  • 3马良,朱刚,宁爱兵.蚁群优化算法[M].北京:科学出版社,2008,2.
  • 4黄翰,郝志峰,吴春国,秦勇.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1344-1353. 被引量:72
  • 5Piotr Wendykier, James G. Nagy. Parallel Colt; A High-Performance Java Library for Scientific Computing and Image Processing[J]. Sept, 2010,37(3) : 1-22.
  • 6W. Zhu, J. Curry. Parallel ant colony for nonlinear function optimization with graphics hardware acceleration[C]//Proceedings of the 2009 IEEE international conference on Systems, 2009,10 : 1803- 1808.
  • 7J. Li, X. Hu, Z. Pang, et al. A Parallel Ant Colony Optimization Algorithm Based on Fine-Grained Model with GPU-Acceleration[J]. International Journal of Innovative Computing Information and Control, 2009, 5 (11) : 3707-3716.
  • 8J. Wang, C. Zhang, J. Dong. Implementation of ant colony algorithm based on GPU[C]//Sixth Internation- al Conference on Computer Graphics, Imaging and Visualization, 2009,8 :50-53.
  • 9James Martens. Deep learning via Hessian-free optimization[C]//27^th International Conference on Machine Learning, Israel, 2010,7 : 735 - 742.
  • 10L. Shi, J. Hao, J. Zhou, et al. Ant colony optimization algorithm with random perturbation behavior to the problem of optimal unit commitment with probabilistic spinning reserve determination[J]. Electric Power Systems Research, 2004,69 (2) : 295 - 303.

共引文献201

同被引文献35

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部