期刊文献+

基于卡方检验的多天线认知无线网络协作频谱感知算法 被引量:2

Cooperative spectrum sensing using Chi-square test for multi-antenna cognitive radio
下载PDF
导出
摘要 研究了基于分集的多天线认知无线网络的频谱感知技术。针对天线独立性会导致已有的基于协方差矩阵的协作频谱感知算法性能急剧下降甚至失效的问题,提出了一种基于卡方拟合优度检验的多天线协作频谱感知算法。该算法将频谱感知问题转化为一个多项分布检验的问题,然后利用卡方拟合优度检验判决频谱是否空闲,从而实现频谱感知。理论分析和仿真表明,该算法的性能不受天线相关性以及噪声不确定度的影响。 The spectrum sensing of diversity-based multiple antenna cognitive radio systems was studied. To solve the problem that the performance of the existing cooperative spectrum sensing algorithm based on covariance matrix degrades seriously due to the channel independence, a new cooperative spectrum sensing algorithm based on Chi-square goodness of fit test for multi-antenna cognitive radio systems was presented. The algorithm transforms the spectrum sensing problem into a muhinomial distribution test problem, and uses the Chi-square goodness of fit test to examine a spectrum if idle so as to realize spectrum sensing. The theoretical analysis and simulation show that the performance of the proposed algorithm is robust to the antenna correlation and noise uncertainty.
作者 徐偲 卢光跃 叶迎晖 弥寅 Xu Cai Lu Guangyue Ye Yinghui Mi Yin(National Engineering Laboratory for Wireless Security, Xi'an University of Posts and Telecommunications, Xi' an 710121)
出处 《高技术通讯》 CAS CSCD 北大核心 2016年第7期650-656,共7页 Chinese High Technology Letters
基金 国家自然科学基金(61271276 61301091) 863计划(014AA01A705)资助项目
关键词 认知无线电 协作频谱感知 卡方拟合优度检验 分集增益 cognitive radio, cooperative spectrum sensing, Chi-square goodness of fit test, diversity gain
  • 相关文献

参考文献4

二级参考文献97

  • 1Haykin S. Cognitive radio: brain-empowered wireless communications [J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
  • 2Cabric D, Mishra S M, and Brodersen R W. Implementation issues in spectrum sensing for cognitive radios[C]. Proc. of 38th Asilomar Conf. Signals, System, and Computers, Monterey, CA, Nov. 2004: 772-776.
  • 3Digham F, Alouini M, and Simon M. On the energy detection of unknown signals over fading channels[C]. IEEE Int. Conf. Commun., Seattle, Washington, USA, May 2003, Vol. 5: 3575-3579.
  • 4Tang H. Some physical layer issues of wide-band cognitive radio systems[C]. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA. Nov. 2005: 151-159.
  • 5Sutton P D, Nolan K E, and Doyle L E. Cyclostationary signatures in practical cognitive radio applications[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(1): 13-24.
  • 6Zeng Y and Liang Y C. Maximum-minimum eigenvalue detection for cognitive radio[Cl. The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. (PIMRC), Athens, Greece, Sep. 2007.
  • 7Penna F and Garello R. Theoretical performance analysis of eigenvalue-based detection, http://arxiv.org/pdf /0907. 1523v2, 2009.9.
  • 8王颖喜,卢光跃.基于空间谱的频谱感知办法[C].第三届全国通信新理论与新技术学术大会,宁波,2009,10.
  • 9Quan z, Cui S, Poor H V, and Sayed A H. Collaborative wideband sensing for cognitive radios[J]. IEEE Signal Processing Magazine, 2008, 25(6): 60-73.
  • 10Sahai A, Hoven N, and Tandra. Some fundamental limits on cognitive radio[C]. Allerton Conf. on Control, Communication, and Computation, Monticello, Oct. 2004. doi=10.1.1.123.5645&zrep.

共引文献57

同被引文献12

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部