摘要
本文应用上下解方法、摄动方法等,进一步推广了早期结果并给出半线性椭圆方程-△u+p(x)|▽u|~γ=λf(x,u),u>0,x∈R^N,lim_(|x|→∞)u(x)=0,正解的存在性,其中γ∈(1,2],λ>0,函数p:R^N→[0,∞)和f:R^N×(0,∞)→[0,∞)均为局部H(o|¨)lder连续.
By a sub-supersolution method and a perturbed argument, we extend the earlier results concerning the existence of positive solutions for the following semilinear elliptic problem -△u+p(x)|▽u|γ=λf(x,u),u〉0,x∈R N,lim |x|→∞u(x)=0,where γ∈(1,2],λ〉0,and P:R N→[0,∞)and f:R N×(0,∞)→[0,∞) are locally Holder continuous.
出处
《数学进展》
CSCD
北大核心
2017年第1期103-110,共8页
Advances in Mathematics(China)
关键词
半线性椭圆方程
正整体解
梯度项
存在性
semilinear elliptic equation
positive entire solution
convection term
existence