期刊文献+

C同时提高马氏体钢强度和塑性的原理和机制 被引量:11

The Principle and Mechanism of Enhancement of Both Strength and Ductility of Martensitic Steels by Carbon
原文传递
导出
摘要 自从淬火-配分-回火(Q-P-T)工艺被提出以来,本课题组在低C至中C含量的范围内实现了通过增加C含量的同时增强Q-P-T马氏体钢的强度和塑性。最近本课题组致力于将C含量扩大到高C范围。在多次尝试失败的基础上,提出了反相变诱发塑性(anti-TRIP)效应的设计理念,并在该理念指导下进行高碳低合金马氏体钢的成分和工艺设计,使高碳Q-P-T马氏体的强度和塑性均高于中碳Q-P-T马氏体钢,实现了通过C同时增强钢的强度和塑性。本文主要论述anti-TRIP效应提出的背景、高碳Q-P-T马氏体钢成分和工艺的设计及其微观组织、高碳Q-P-T马氏体钢的高强-塑性机制,最后分析Q-P-T工艺使C同时提高马氏体钢的强度和塑性的原理。 Since quenching-partitioning-tempering (Q-P-T) process was proposed in 2007, our re- search group have realized the enhancement of both strength and ductility of Q-P-T martensitic steels by increasing the carbon from low content to medium content range. The recent work devoted every effort to extending carbon content to high carbon range. Based on failure of our many trials, a design idea of anti- transformation induced plasticity (anti-TRiP) effect was proposed and the composition and process of high carbon low alloying martensitic steel were designed according to the idea of anti-TRIP effect so that the strength and ductility of high carbon Q-P-T martensitic steel are higher than those of medium carbon Q-P-T martensJtic steel, which fulfills the desire of investigators for a century. This paper will mainly ex- pound the background of anti-TRiP effect, the design of composition and process of high carbon Q-P-T martensitc steel as well as its microstructure, the mechanism of high strength and ductility for high carbon Q-P-T martensitic steel, and finally analyze the principle that Q-P-T process makes the enhancement of both strength and ductility by increase of the carbon content.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2017年第1期1-9,共9页 Acta Metallurgica Sinica
基金 国家自然科学基金项目No.51371117~~
关键词 淬火-配分-回火(Q—P-T)工艺 C含量 强度 塑性 反相变诱发塑性(anti-TRIP)效应 quenching-partitioning-tempering (Q-P-T) process, carbon content, strength, ductility, anti-transformation induced plasticity (anti-TRiP) effect
  • 相关文献

参考文献4

二级参考文献81

  • 1Sakuma Y. In: Baker M A ed., Proc Int Conf on Advanced High Strength Sheet Steels for Automotive Applications. Warrendale: Association for Iron-Steel Technology, 2004: 11.
  • 2Sugimoto K, Kobayshi M, Hashimoto S. Metall Trans, 1992; 23:3085.
  • 3Speer J G, Matlock D K, Cooman B C, Schroch J G. Acta Mater, 2003; 51:2661.
  • 4Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426-432:1089.
  • 5Wang X D, Zhong N, Rong Y H, Xu Z Y. J Mater Res, 2009; 24:261.
  • 6Matlock D K, Speer J G. In: Lee H C ed., The 3rd Int Conf on Advanced Structural Steels. Korea: The Korean Institute of Metals and Materials, 2006:774.
  • 7Mileiko S T, Speer J G. J Mater Sci, 1969; 4:974.
  • 8Hsu T Y (Xu Z Y). Mater Sci Forum, 2007; 561:2283.
  • 9Zhong N, Wang X D, Rong Y H, Wang L. Mater Sci Eng, 2009; 506:111.
  • 10Speer J G, Matlock D K, DeCooman B C, Schroch J G. Acta Mater, 2003; 51:2611.

共引文献72

同被引文献71

引证文献11

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部