期刊文献+

融合SLIC的DCUT改进图像分割算法 被引量:2

Improved DCUT Image Segmentation Algorithm Based on SLIC
下载PDF
导出
摘要 谱聚类DCUT算法能在任意形状的样本空间上聚类且收敛于全局最优解,但其缺点是计算相似度矩阵和特征向量的复杂度较高.为了提高了DCUT的算法速度,提出了基于SLIC的DCUT算法(SDCUT).SDCUT算法首先采用SLIC算法分割图像成超像素,再根据任意两个超像素的归一化直方图计算Pearson系数作为超像素之间的相似度,从而建立基于超像素的相似度矩阵,最后采用DCUT算法对超像素进行分类获得最终分割结果.在一系列图像上的实验结果表明,与几种经典谱聚类算法相比,本文方法的分割速度更快,且具有较好的分割效果. Spectral DCUT algorithm can cluster samples in any form of feature space and has global optimal solution, But its disadvantage is that the complexity of computing the similarity matrix and the feature vector is higher. In order to improve the speed of DCUT algorithm, a new algorithm based on SLIC(S-DCUT)is proposed. S-DCUT algorithm firstly uses SLIC method to split the image into super pixels, secondly according to normalized histogram of super pixels, the Pearson coefficient is computated as the similarity between any two super pixels, therefore a similarity matrix based on super pixels is established, finally the DCUT algorithm is used to classify the super pixels to obtain the final segmentation results. Experimental results on a series of images show that the proposed method is faster and has good segmentation results compared with some classic spectral methods.
作者 邹小林
出处 《新疆大学学报(自然科学版)》 CAS 北大核心 2017年第1期78-83,95,共7页 Journal of Xinjiang University(Natural Science Edition)
基金 广东省教育厅"创新强校工程"特色创新项目(2014KTSCX190) 广东省教学质量与教学改革工程建设项目应用型人才培养示范专业(50) 肇庆市科技创新计划项目(214) 肇庆学院自然科学青年基金项目(201321)资助
关键词 SLIC 判别割 Pearson系数 SLIC DCUT Pearson coefficient
  • 相关文献

参考文献7

二级参考文献99

  • 1卢志茂,许晓丽,范冬梅,李海燕.二次分水岭和Ncut相结合的彩色图像分割方法[J].华中科技大学学报(自然科学版),2011,39(S2):95-98. 被引量:9
  • 2唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 3李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 4Tan P N, Steinbach M, Kumar V. Introduction to Data Mining. Toronto, Canada: Addison-Wesley Longman, 2005.
  • 5Strehl A, Ghosh J. Cluster Ensembles--A Knowledge Reuse Framework for Combining Partitionings// Proc of the 11 th Conference on Artificial Intelligence. Edmonton, Canada, 2002 : 93 - 98.
  • 6Fred A L, Jain A K. Combining Multiple Clusterings Using Evidence Accumulation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (6) : 835 - 850.
  • 7Fern X Z, Brodley C E. Solving Cluster Ensemble Problems by Bipartite Graph Partitioning// Proc of the 20th International Conference on Machine Learning. Banff, Canada, 2004:36 -43.
  • 8Topchy A, Jain A K, Punch W. A Mixture Model for Clustering Ensembles// Proc of the 4th SIAM International Conference on Data Mining. Lake Buena Vista, USA, 2004:379 -390.
  • 9Ayad H, Basir O A, Kamel M. A Probabilistic Model Using Information Theoretic Measures for Cluster Ensembles//Proc of the 5th International Workshop on Multiple Classifier Systems. Cagliari, Italy, 2004:144-153.
  • 10Fern X Z, Lin W. Cluster Ensemble Selection. Statistical Analysis and Data Mining. 2008, 1(3) : 128 -141.

共引文献104

同被引文献19

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部