期刊文献+

嵌入式无线传感器压缩图像特征提取优化仿真 被引量:3

Embedded Wireless Sensor Compressed Image Small Feature Extraction Optimization Simulation
下载PDF
导出
摘要 针对传统的压缩图像特征提取方法,忽略了压缩过程对图像像素频率波动带来的失真,导致提取结果误差大的问题。提出采用基于统计特征融合的SAR压缩图像特征提取方法,依据嵌入式无线传感器中图像像素传递的波散射原理,真实地反映图像像素的灰度值,将图像灰度和纹理特征相结合,利用模糊C均值法对SAR图像像素特征进行聚类,将分类后的压缩图像特征进行提取。仿真结果表明,改进方法在进行嵌入式无线传感器中压缩图像特征提取时,提取数据量提高了约5.59T,误差率降低了约10.25%,具有良好的实用性。 In the paper, we proposed a method of SAR compressed image feature based on fused statistical features. According to the theory of wave scattering which can truly reflect the gray values of the image pixel, the image gradation and textural features were combined, and SAR image pixel features were clustered based on the method of fuzzy c-means. Then the classified compressed image features were extracted. Simulation results indicate that during extracting the features by improved method, the data size is increased by about 5.59T, and the error rate is reduced by about 10.25%.
出处 《计算机仿真》 北大核心 2017年第1期344-347,共4页 Computer Simulation
关键词 嵌入式 无线传感器 压缩图像 特征提取 Embedded Wireless sensor Compressed images Feature extraction
  • 相关文献

参考文献8

二级参考文献64

  • 1李淑秋,侯自强.用奇异值分解法提取微弱的胎儿心电信号[J].数据采集与处理,1989,4(A10):12-14. 被引量:2
  • 2[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 3[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297
  • 4[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136
  • 5[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998
  • 6[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998
  • 7[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953
  • 8[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31
  • 9[8]Osuna E,Freund R,Girosi F.Support Vector Machines:Training and Applications.AI Memo 1602,MIT AI Lab,1997
  • 10[9]Osuna E,Freund R,Girosi F.An Improved Training Algorithm for Support Vector Machines.In:Principe J,Gile L,Morgan N,Wilson E eds.,Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing,New York:IEEE,1997:276~285

共引文献104

同被引文献34

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部