期刊文献+

非奇异M-矩阵最小特征值的下界序列

Sequences of Lower Bounds for Minimum Eigenvalue of Nonsingular M-Matrices
下载PDF
导出
摘要 针对非奇异M-矩阵A的最小特征值τ(A)的估计问题,利用Brauer定理和逆矩阵元素的上界序列,给出了τ(A)的单调递增的收敛的下界序列.最后通过数值算例对理论结果进行验证,数值算例显示,所得下界序列比现有结果精确,且在某些情况下能达到真值. For the lower bounds of the minimum eigenvalueτ(A)of nonsingular M-matrix A,some monotone increasing and convergent sequences of lower bounds ofτ(A)are obtained by using Brauer's theorem and the upper bounds of A^-1.Finally,numerical examples have been given to verify the theoretical results,showing that these sequences of lower bounds are more accurate than some existing results and could reach the true value of the minimum eigenvalue in some cases.
作者 赵建兴
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2016年第12期1-6,共6页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11361074 11501141) 贵州省科学技术基金项目(黔科合J字[2015]2073号) 贵州省教育厅科技拔尖人才支持项目(黔教合KY字[2016]066号)
关键词 M-矩阵 非负矩阵 谱半径 HADAMARD积 最小特征值 M-matrix nonnegative matrix spectral radius Hadamard product minimum eigenvalue
  • 相关文献

参考文献4

二级参考文献44

  • 1黄廷祝,杨传胜.特殊矩阵分析及应用[M].北京:科学出版社,2003.
  • 2陈景良,陈向晖.特殊矩阵[M].北京:清华大学出版社,2000.130.
  • 3SHIVAKUMAR P N, WILI.IAMS J J, YE Q, et al. On Two-Sided Bounds Related to Weakly Diagonally Dominant M- Matrices with Application to Digital Circuit Dynamics [J]. SIAM J Matrix Anal Appl, 1996, 17(2): 298--312.
  • 4HORN R, JOHNSON C R. Topics in Matrix Analysis[M]. New York: Cambridge University Press, 1991.
  • 5FIEDLER M, MARKHAM T. An Inequality for the Hadamard Product of an M Matrix and Inverse M-Matrix [J].Lin earebra Appl, 1988, 101(4): 1--8.
  • 6YONG Xue-rong. Proof of a Conjecture of Fiedler and Markham [J]. Linear Algebra Appl, 2000, 320 (1- 3): 167--171.
  • 7YONG Xue-rong, WANG Zheng. On a Conjecture of Fiedler and Markham [J]. Linear Algebra Appl, 1999, 288(2) : 259--267.
  • 8SONG Yong-zhong. On an Inequality for the Hadamard Product of an M-Matrix and Its Inverse [J]. Linear Algebra Ap- pl, 2000, 305(1--3):99--105.
  • 9CHEN Shen-can. A Lower Bound for the Minimum Eigenvalue of the Hadamard Product of Matrices [J]. Linear Alge- bra Appl, 2004, 378(2): 159--166.
  • 10LI Hou-biao, HUANG Ting-zhu, SHEN Shu-qian, et al. Lower Bounds for the Minimum Eigenvalue of Hadamard Product of an M-Matrix and Its Inverse [J]. Linear Algebra Appl, 2007, 420(1): 235--247.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部