摘要
针对非奇异M-矩阵A的最小特征值τ(A)的估计问题,利用Brauer定理和逆矩阵元素的上界序列,给出了τ(A)的单调递增的收敛的下界序列.最后通过数值算例对理论结果进行验证,数值算例显示,所得下界序列比现有结果精确,且在某些情况下能达到真值.
For the lower bounds of the minimum eigenvalueτ(A)of nonsingular M-matrix A,some monotone increasing and convergent sequences of lower bounds ofτ(A)are obtained by using Brauer's theorem and the upper bounds of A^-1.Finally,numerical examples have been given to verify the theoretical results,showing that these sequences of lower bounds are more accurate than some existing results and could reach the true value of the minimum eigenvalue in some cases.
出处
《西南师范大学学报(自然科学版)》
CAS
北大核心
2016年第12期1-6,共6页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11361074
11501141)
贵州省科学技术基金项目(黔科合J字[2015]2073号)
贵州省教育厅科技拔尖人才支持项目(黔教合KY字[2016]066号)