期刊文献+

半群Oε_n的极大幂等元生成子半群 被引量:1

Maximal Idempotent-Generated Subsemigroups of Semigroup Oε_n
下载PDF
导出
摘要 设Oε_n是X_n上的保序且升序变换半群,对_n≥3,研究了半群Oε_n的极大幂等元生成子半群的结构,证明了半群Oε_n的极大子幂等元生成子半群S有且仅有两类:S=Oε_n\{∈}和S=I_(n-2)∪{∈}∪G_m(1≤m≤n-1),其中I_(n-2)={α∈Oε_n:|im(α)|≤n-2},G_m={α∈Oε_n:|im(α)|=n-1,mα=m},∈是集合X_n上的恒等变换. Let Oεn be the semigroup of all increasing and order-preserving full transformations on Xn.For arbitrary nsuch that n≥3,the structures of the maximal idempotent-generated subsemigroups of the semigroup Oεnwere studied.The authors have proved that the semigroup Oεnhas exactly two classes of maximal idempotent-generated subsemigroups:S=Oεn/{∈}and S=I(n-2)∪{∈}∪Gm(1≤m≤n-1),where I(n-2)={α∈Oεn:|im(α)| ≤n-2},Gm={α∈Oεn:|im(α)|=n-1,mα=m},∈ is the identity on Xn.
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2016年第12期11-15,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家高技术研究发展计划(863计划)(2015AA015408) 广东省教育科学"十二五"规划课题强师工程重点项目(2014ZQJK001) 第三批广州市教育系统创新学术团队基金项目(1201630038)
关键词 保序 极大子半群 极大幂等元生成子半群 order-preserving maximal subsemigroup maximal idempotent-generated subsemigroup
  • 相关文献

参考文献1

二级参考文献11

  • 1Dénes, J.: On Transformations, Transformation semigroups and Graphs, Theory of Graphs. Proe. Colloq.Tihany, 65-75 (1966).
  • 2Bayramov, P. A.: On the problem of completeness in a symmetric semigroup of finite degree (in Russian).Diskret Analiz, 8, 3-27 (1966). MR 34, 7682.
  • 3Liebeck,M. W, Praeger, C. E., Saxl, J.: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra, 111,365-383 (1987).
  • 4Todorov, K., Kracolova, L.: On the maximal subsemigroups of the ideals of finite symmetric semigroups.Simon Stevin, 59(2), 129-140 (1985).
  • 5Yang, X. L.: Maximal subsemigroups of finite singular transformation semigroups. Communications in Aloebra, 29(3), 1175-1182 (2001).
  • 6Yang, X. L.: A classification of maximal inverse subsemigroups of the finite symmetric inverse semigroups.Communications in Algebra, 2T(8), 4089-4096 (1999).
  • 7Howie, J. M.: An introduction to semigroup theory, Academic Press, London, 1976.
  • 8Tetrad, S.: Unsolved problems in semigroup theory (in Russian). Sverdlovsk, 1969; (Engl. Transl., Semiqroup Forum, 4 , 274-280 (1972)). MR 42, 7807.
  • 9Fountain, J. M.: Abundant semigroups. Proc. London Math. Soc. (3), 44, 103-129 (1982).
  • 10Evseev,A. E,Podronl N,E.Semigroups of transformations generated by idempotents of given defect, lzv.Vyssh. Uchebn. Zaved. Mat., 2(117), 44-50 (1972).

共引文献18

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部