期刊文献+

拓扑群理论下的连续周期函数分类

The classifications of continuous periodic functions from based on topological groups theory
原文传递
导出
摘要 证明了定义在拓扑加群上连续周期函数的所有周期构成一个闭子群,作为应用给出了定义在实数集和复数集上连续周期函数的分类. It is proved in this paper that the set of all periods of a continuous periodic function defined on an additive topological group constitutes a closed subgroup of the domain. As applica- tions, the classifications of all continuous periodic functions defined on the set of real numbers and the set of all complex numbers are given.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2016年第4期22-24,42,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11501404) 江苏省自然科学基金资助项目(BK20140583) 江苏省高校自然科学基金资助项目(14KJB110024)
关键词 周期函数 拓扑群 闭子群 periodic function topological group closed subgroup
  • 相关文献

参考文献1

二级参考文献11

  • 1李永明.连续偏序集的下收敛结构[J].工程数学学报,1994,11(1):1-7. 被引量:4
  • 2SCOTT D S.Continuous lattices[M]//Lecture Notes in Mathematics.Berlin:Springer-Verlag,1972,274:97-136.
  • 3GIERZ G,HOFMANN K H,KEIMEL K,et al.Continuous lattices and Domains[M].Cambridge:CambridgeUniversity Press,2003:133-240.
  • 4LAWSON J D,XU Luo-shan.Posets having continuous intervals[J].Theor Comput Sci,2004,316(1/3):89-103.
  • 5ZHAO Bin,ZHAO Dong-sheng.Lim-inf convergence in partially ordered sets[J].J Math Anal Appl,2005,309(2):701-708.
  • 6McSHANE E J.Order-preserving maps and integration process[M]//GRIFFITHS P A,et al.Annals ofMathematics Studies.Princeton,NJ:Princeton University Press,1953:60-115.
  • 7ZHOU Yi-hui,ZHAO Bin.Order-convergence and lim-infM-convergence in posets[J].J Math Anal Appl,2007,325(1):655-664.
  • 8MAO Xu-xin,XU Luo-shan.Meet continuity properties of posets[J].Theor Comput Sci,2009,410(42):4234-4240.
  • 9KELLEY J L.一般拓扑学[M].北京:科学出版社,1982.
  • 10李庆国,李纪波.基于下极限收敛的偏序集的交连续性(英文)[J].数学进展,2010,39(6):755-760. 被引量:2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部