期刊文献+

基于CRF模型的用户文本检索需求信息划分 被引量:1

The division of user text retrieval demand information based on CRF model
原文传递
导出
摘要 为了正确理解检索意图和客观表达用户的主观信息,结合CRF模型较高的语义区分率和歧义消解率等特点,对用户文本检索需求信息进行区分,同时选择关键词的上下文信息作为特征获取更丰富的信息,提出一种基于条件随机场(conditional random field,CRF)模型的文本检索需求信息划分算法(CRF_Q),从而清晰地划分两个连续检索词间的边界.在锚文本相似度和检索词相似度两个属性相组合的实验结果中,决策树模型和CRF_Q算法最优,且CRF_Q算法的综合评价指标较决策树模型高4.4%. In order to correctly understand the retrieval intention and express the user subjective information, combined with the characteristics of higher semantic differential rate and ambiguity resolution rate of CRF model, the user text retrieval requirement information is differentiated, The CRF_Q algorithm is given in this paper. With the keyword context information as a feature, more information obtained at the same time. The boundary between two consecutive retrievals is clearly divided. In the experimental results of combining with anchor text similarity and retrieval similari- ty, the decision tree model and CRF_Q algorithm are optimal. Furthermore, the comprehensive evaluation index of CRF_Q algorithm is 4.4 % higher than that of the decision tree model.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2016年第4期47-49,53,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家级星火计划资助项目(2011GA690190) 江苏省高校哲学社会科学研究资助项目(2015SJD702) 淮阴工学院科研基金资助项目(HGC1422)
关键词 条件随机场(cRF)模型 文本检索 需求信息划分 conditional random field (CRF) model text retrieval demand information division
  • 相关文献

参考文献3

二级参考文献18

  • 1余慧佳,刘奕群,张敏,茹立云,马少平.基于大规模日志分析的搜索引擎用户行为分析[J].中文信息学报,2007,21(1):109-114. 被引量:117
  • 2任宏利,丑纪范.数值模式的预报策略和方法研究进展[J].地球科学进展,2007,22(4):376-385. 被引量:56
  • 3Bin Tan, Fuchun Peng. Unsupervised query segmentation using generative language models and Wikipedia[C]//Proceeding of the 17th international conference on World Wide Web. Beijing, China, 2008:347-356.
  • 4Craig Silverstein, Monika Henzinger, Hannes Marais, et al. Analysis of a very large Web search engine query log[J]. In SIGIR Forum, fall 1998, 33(1):6-12.
  • 5Daqing He, Ays, e Goker. Detecting session boundaries from Web user logs[C]//Proceedings of the 22nd annual colloquium on information, 2000.
  • 6H. Cenk Ozmutlu , Fatih cavdur, Application of automatic topic identification on excite web search engine data logs.[J]Information Processing and Management: an International Journal, 2005, 41(5) : 1243-1262.
  • 7Jing Bai, Jian-Yun Nie, Guihong Cao, Hugues Bouchard. Using query contexts in information retrieval[J]. SIGIR'07, July 23-27, 2007.
  • 8Jinhui Yuan, Huiyi Wang, Lan Xiao, Wujie Zheng, Jianmin Li, Fuzong Lin, and Bo Zhang. A Formal Study of Shot Boundary Detection. [C]//IEEE transactions on circuits and systems for video technology, VOL. 17, NO. 2, pp. 168-186. February 2007.
  • 9Qingsong Yao, Xiangji Huang and Aijun An. Applying Language Modeling to Session Identification from Database Trace Logs[C]//Knowledge and Information Systems, 2006-Springer.
  • 10S Ozmutlu, F Cavdur. Neural network applications for automatic new topic identification[J]. Online Information Review,2005, 29(1):34-53.

共引文献27

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部