期刊文献+

大数据分析优化变换预热器运行参数

Study on Operational Parameters of Optimized Convertor with Large Data Analysis
下载PDF
导出
摘要 大唐呼伦贝尔化肥有限公司建设了世界上首套以褐煤水煤浆为气化源头的煤化工项目,开车以后出现一系列问题,其中变换工段原料气预热器的结垢堵塞最为严重,制约着整个项目的长周期稳定运行,给公司生产经营带来了损失。本文采用"大数据分析"的理念,对预热器某一运行周期内的相关操作运行参数进行系统分析,筛选出导致积灰结垢的操作参数,并进一步优化,为后续装置的运行提供指导。 Hulun Buir Datang Chemical Co. Ltd. builds the world's first coal chemical project with water slurry of lignite coal as the gasification source.A series of problems have occurred after it was put into operation. Among these problems,the clogging of raw gas convertor in the transformation process is the most serious one,restricting the long time stable operation of the project,and bringing huge losses to the production and operation of the company.With the concept of"big data analysis",this paper conducts a systematic analysis of relevant operating parameters in a certain running period of convertor to select the operating parameters of scaling and further optimize them,providing guidance for the subsequent operation of the plant.
出处 《化肥设计》 CAS 2016年第6期28-32,共5页 Chemical Fertilizer Design
关键词 大数据分析 运行参数 结垢 优化 big data analysis operation parameters scaling optimization
  • 相关文献

参考文献7

二级参考文献111

  • 1王媛媛,丁毅,孙媛媛,赵志丹.数据可视化技术的实现方法研究[J].现代电子技术,2007,30(4):71-74. 被引量:34
  • 2李凌燕.OLAP系统中多维数据可视化的实现[J].现代电子技术,2007,30(10):142-145. 被引量:2
  • 3John D.Dehaan.柯克火灾调查[M].北京:化学工业出版社,2006.
  • 4工业和信息化部.《物联网“十二五”发展规划》发布[EB/OL].http://WWW.miit.gov.cn/n11293472/n11293832/n12771663/14473808.html.
  • 5Irizuki Y, Tsutaki S, Tani T, et al. Extraction of operating know-how of experienced operators using neural networks and its application to PID and neuro-fuzzy hierarchical controller[A]. IEEE International Conference on Systems, Man, and Cybernetics[C].
  • 6Schmuhl J, Hartmann R, Muller H, et al. Structural parameter approach and multicriteria optimization techniques for complex chemical engineering design [J]. Computers and Chemical Engineering, 1996, 20 (Suppl.): S 327~S 332.
  • 7Chen M S, Han J, Yu P S. Data mining: an overview from a data base perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6):866-883.
  • 8Fayyad U, Piatetsky-Shapiro G, Smith P, et al. Advances in knowledge discovery and data mining[M]. Cambridge :AAAI/MIT Press, 1996.
  • 9Bhat N V, Minderman P A, McAvoy Jr. T, et al. Modeling chemical process systems via neural computation[J]. IEEE Control Systems Magazine, 1990, 10(3): 24-30.
  • 10Mastrangelo C M, Porter J M. Data mining in a chemical process application[A]. IEEE International Conference on Systems, Man, and Cybernetics[C]. 1998, 3: 2 917-2 921.

共引文献780

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部